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Classical Vector Algebra

Every physicist and engineer, and certainly every mathematician, would 
undoubtedly agree that vector algebra is one of the basic mathematical 
instruments in their toolbox.

Classical Vector Algebra should be viewed as a prerequisite for, and an intro-
duction to, other mathematical courses dealing with vectors, and it follows 
the typical form and appropriate rigor of more advanced mathematics texts.

The vector algebra discussed in this book briefly addresses vectors in gen-
eral 3- dimensional Euclidean space, and then, in more detail, looks at vectors 
in Cartesian 𝐑3 space. These vectors are easier to visualize and their oper-
ational techniques are relatively simple, but they are necessary for the study 
of Vector Analysis. In addition, this book could serve as a good way to build 
up intuitive knowledge for more abstract structures of 𝑛- dimensional vector 
spaces.

Definitions, theorems, proofs, corollaries, examples, and so on are not useless 
formalism, even in an introductory treatise –  they are the way mathematical 
thinking has to be structured. In other words, an “introduction” and “rigor” 
are not mutually exclusive.

The material in this book is neither difficult nor easy. The text is a serious 
exposition of a part of mathematics that students need to master in order to 
be proficient in the field. In addition to the detailed outline of the theory, the 
book contains literally hundreds of corresponding examples and exercises.
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Preface

Every physicist and engineer, and certainly every mathematician, would 
undoubtedly agree that vector algebra is among the basic mathematical 
instruments in their toolbox.

The title Classical Vector Algebra might be misconstrued as something par-
ticular, or something different from “simple” vector algebra. That is not the 
case. The adjective “classical”, for lack of a better word, was used on pur-
pose, for two reasons: first, in order to avoid the term “simple” which, argu-
ably, is much disliked by students; second, to differentiate it from, say, Vector 
Calculus, Linear Algebra, or parts of Differential Geometry (which, of course, 
are separate fields on their own). In other words, the vector algebra discussed 
in this book briefly addresses vectors in general 3- dimensional Euclidean 
space, and then, in more detail, considers vectors in Cartesian R3 space. These 
vectors are easier to visualize, and their operational techniques are relatively 
simple, but they are necessary for the next step, which is the study of Vector 
Analysis. In addition, this book could serve as a good way to build up the 
intuition needed for more abstract structures of n- dimensional vector spaces.

Having said all that, the present book should be viewed as a prerequisite for, 
and an introduction to, other mathematical disciplines dealing with vectors, 
and it follows the typical form and appropriate rigor of more advanced math 
texts. Definitions, theorems, proofs, corollaries, examples, and so on are not 
useless formalism, even in an introductory treatise –  they are the way in 
which mathematical thinking has to be structured. In other words, the terms 
“introduction” and “rigor” do not exclude one another –  they should com-
plement each other. This is not to say that the material in this book is difficult, 
nor that it is easy. It is simply an attempt to give a serious exposition of a part 
of mathematics that “everybody” working in the above- mentioned discip-
lines needs to master in order to be proficient in his/ her field. In addition 
to the detailed outline of the theory, the book contains literally hundreds of 
corresponding examples and exercises. This author hopes that the reader will 
complete at least some of them.

Finally, the author would consider it a success if, after working carefully 
through this book, the reader is enticed to study more advanced mathematics.
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1
Introduction

In natural sciences, particularly in physics, as well as in different engineering 
disciplines and certainly in mathematics, one distinguishes two basic quan-
tities: scalars and vectors. Unlike numbers that appeared almost “naturally” 
in all civilizations millennia ago, vectors, although ubiquitous, interestingly 
enough appeared in the sciences much later. In 1679 Gottfried Wilhelm 
Leibniz1 apparently recognized the need to create an algebra capable of hand-
ling objects encapsulating both a magnitude and a direction. In 1687, in his 
Principia,2 Isaac Newton, when discussing the problem of two forces acting 
on an object simultaneously, mentioned the diagonal of a parallelogram 
as the resultant sum of the acting forces. In the same period, other authors 
worked on the geometrical interpretation of complex numbers. Around 
1830, Carl Friedrich Gauss,3 following the work of Jean- Robert Argand,4 
published a paper describing entities comparable to complex numbers but 
placed in three- dimensional space. Works by W. R. Hamilton,5 J. W. Gibbs,6 
O. Heaviside,7 and H. Grassmann8 followed. So, by 1910, vector analysis had 
become a standard tool of mathematicians and physicists.9

Notes

1 Gottfried Wilhelm Leibniz (1646– 1716), German mathematician, philosopher, sci-
entist, and diplomat.

2 Sir Isaac Newton (1643– 1727), Philosophiæ Naturalis Principia Mathematica, 1687.
3 Johann Carl Friedrich Gauss (1777– 1855), German mathematician.
4 Jean- Robert Argand (1768– 1822), Swiss (amateur) mathematician.
5 Sir William Rowan Hamilton (1805– 1865), Irish mathematician.
6 Josiah Willard Gibbs (1839– 1903), American mathematician and physicist.
7 Oliver Heaviside (1850– 1925), English mathematician and physicist.
8 Hermann Günther Grassmann (1809– 1877), German mathematician, physicist, 

and linguist.
9 A reader interested in the history of vector analysis may consult Crowe, M.J.,  

A History of Vector Analysis, Dover Publications; Revised ed. (November 2, 2011).
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2
Vector Space –  Definitions, Notation  
and Examples

As is always the case in science, we want to construct a mathematical for-
malism so that we can handle, with precision and rigor, the quantities that 
occur, in order to understand and describe natural phenomena and make 
predictions. The formalism we discuss in this book is (classical) vector 
algebra.1 We will present it mostly through its geometrical model in intui-
tively understood 1- , 2- , and 3- dimensional spaces.

Indeed, since all natural physical phenomena occur in space, the first 
thing we ask is: what is a space? What is 1- dimensional, 2- dimensional, 3- 
dimensional, …, n- dimensional space? How should we think about it? How 
should we conceptualize it? The precise definition of a (vector) space will be 
given shortly. For the time being we approach it rather intuitively.

So, postponing formal definitions for the time being, we start with some 
frequently used “working” definitions. It is to be hoped that this will pro-
voke curiosity, incite mathematical intuition, and prepare the beginner for 
the rigorous formalisms that follow.

Definition 2.1
Quantities completely specified by single data (real numbers), like length, 
mass, speed, temperature, and so on, are called scalars.

Quantities for whose accurate description we need two pieces of informa-
tion, their magnitude and their direction, are called vectors. Typical examples 
of these are velocity, acceleration, force, electric field, and so on.

We assume that the reader is familiar with the concept of real numbers, i.e. 
the set R,2 as well as the representation of real numbers on a (real) line. In 
other words, given a number x ∈R we can “visualize” it as a point on a line 
(Figure 2.1).

The simplest example of a 1- dimensional space that we can think of would 
therefore be a real line, that is, the set R.

If we think of a line as a 1- dimensional space then we can think of  
2- dimensional space –  a plane –  as a set of ordered pairs of real numbers:3

 

 

 

 

 

http://dx.doi.org/10.1201/9781003343486-2


Classical Vector Algebra4

4

R R2 = ( ) ∈{ }x y x y, | ,

= ×R R

Thus, an ordered pair of two real numbers x y,( ) represents a point in the 
plane, i.e. an element of a 2- dimensional space (Figure 2.2).

Similarly, a 3- dimensional space would be

R R3 = ( ) ∈{ }x y z x y z, , | , ,

= ×R R2

and a point in such a space, i.e. an element of this space, can be visualized as 
in Figure 2.3.

The fact that we cannot visualize spaces of higher dimensions does not 
mean that we cannot generalize the above concepts to higher dimensions, that 
is, to conceptualize an n- dimensional “point” x (a boldface x) and the space in 
which this point “lives”. In order to do this, so that we are not restricted by 
the number of dimensions, we shall define a point in n- dimensional space, or, 
simply, n- space, to be an n- tuple of numbers

x = …( )x x xn1 2, , ,

where n ∈N.
Obviously,4 the corresponding n- space is

R Rn
n ix x x x i n= …( ) ∈ = …{ }1 2 1 2, , , | , , , .

We can think of the numbers x xn1 , ,…  as the coordinates of the “point” x, and 
we can say that x ∈Rn is an element of the space Rn.

2

1

FIGURE 2.2

0 x R
FIGURE 2.1
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For x y, ∈Rn, we say that x y= , i.e. x x x y y yn n1 2 1 2, , , , , , ,…( ) = …( )  if and  
only if (iff) x y x y x yn n1 1 2 2= = … =, , , . Now we want to define the addition  
of those “points”.

Definition 2.2
Let x y, ∈Rn. Then

x y+ = …( ) + …( )x x x y y yn n1 2 1 2, , , , , ,

= + + … +( )x y x y x yn n1 1 2 2, , , .

Since all x yi i, ∈R, we immediately see that the commutativity property of 
addition defined in this way holds. Namely,

x y y x+ = +

The above short detour to one of the possible n- dimensional spaces is taken on 
purpose to indicate that many of the concepts of vector algebra discussed in 
this book can be generalized to more abstract structures and, vice versa, many 
of the concepts from n- dimensional spaces can be considered as “inherited” 
from classical vector algebra. The following example illustrates this.

Example 2.1
Let x y, ,∈R3  such that x = ( )1 2 3, ,  and y = ( )3 1 2, , . Then

x y+ = ( ) + ( )1 2 3 3 1 2, , , ,

 = ( )4 3 5, ,  ■

From Definition 2.2 and the example above, it is evident that, given x y z, , ∈Rn

3

2
1

FIGURE 2.3
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x y z x y z+( ) + = + +( ).

Now, if we define zero as 0 = …( ) ∈0 0 0, , , Rn, then, for every x ∈Rn,

0 0+ = + =x x x.

These intuitively generated concepts entice us towards a formal definition of 
n- dimensional vector space in general.

Definition 2.3 (Vector space)
Let X x y= …{ }, , ,  be a set whose elements we call vectors, and let Φ = …{ }, ,α β  
be the set of real (or complex) numbers whose elements we call scalars. Next, 
we define two mappings

ϕ : Φ × →X X

and

f : ,X X X× →

by

ϕ α αx x( ) = ,

f x y x y, ,( ) = +

such that, for every α β, ∈Φ  and for every x y z, , ∈ X , the following 
axioms hold:

A.1 x y+ = +y x � ;
A.2 x y z+( ) + = + +( )z x y ;

A.3 There is a unique 0 ∈X, called the neutral element with respect to add-
ition (additive identity), such that 0 0+ = + =x x x;

A.4 ∃ −( ) ∈ ,x X  called the additive inverse, such that x x x x 0+ − = − + =( ) ( ) ;
A.5 α α αx y x y+( ) = + ;

A.6 α β α β+( ) = +x x x;
A.7 αβ α β( ) = ( )x x ;
A.8 ∃ ∈1 Φ such that 1 1x x x x= = ∀ ∈, .X

We say that a quadruple X , ; ,Φ f ϕ( ) =VV  satisfying axioms A.1 to A.8 is a 
vector space (a linear space) over the field Φ5. Often, we simply say that X 
endowed with operations defined by the axioms A.1 to A.8 is a vector space.
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The reader should note that the above definition is quite general, i.e. it 
says nothing about the dimension of the particular space. In other words, 
Definition 2.3 pertains to spaces of any dimension.

Notes

1 For the lack of a better term, we decided to call the vector algebra discussed in this 
book “classical” in order to distinguish algebra in 1- , 2- , or 3- dimensional spaces 
from the more abstract algebra of n- dimensional spaces.

2 A reader unfamiliar with the concept of a set and/ or different sets of numbers 
should consult Appendices A and B.

3 A reader unfamiliar with set- theoretical symbols and notation should consult 
Appendix A.

4 Admittedly, “obvious(ly)” is an overused term in mathematical and scientific 
writing and can often be quite irritating. One needs to bear in mind that some 
mathematical statements that can be verified quickly might still not be obvious. 
(What is obvious for one person may not be obvious for another.) Calling some-
thing “obvious” means that the reason for its truth is or should be clearly under-
stood. (cf. for example P. Halmos, Linear Algebra Problem Book, The Mathematical 
Association of America, 1995.)

5 The reader unfamiliar with the concept of a field should consult Appendix B.
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Three- dimensional Vector Space V V 

3.1  Definition and Basic Features of V V 

Definition 3.1.1
Let’s call our standard 3- dimensional Euclidean space E3 and (again, for the 
time being, without precisely defining this) let’s assume that it has a point- 
like structure. Let A a a a( , , )1 2 3  and B b b b( , , )1 2 3  be two points in this space. 
We call an ordered pair of points ( , )A B  a vector AB

- →--
, where we distinguish 

between the beginning (initial) point, the “tail”, A, and the end (final) point, 
the “tip”, B. Equivalently, we say that a directed line segment AB

- →--
 for which 

we distinguish the beginning point A and the end point B is a vector. Also, 
with A and B defined in this way, we say that aAB AB=

- →--
 is a displacement from 

point A to point B. Following our intuition further, we represent a vector 
graphically as an arrow. In 2- dimensional space E2, a plane, we can visualize 
this as in Figure 3.1.

Analogously, we can visualize a vector in E3 as in Figure 3.2.
If a = AB

- →--
 is a vector in R2, with A a ax y( , ) and B b bx y( , ), then its representation 

in the familiar Cartesian coordinate system would look like Figure 3.3.
Similarly, in R3 with A a a ax y z( , , ) and B b b bx y z( , , ) we would have what is 

shown in Figure 3.4:

Definition 3.1.2
Let S be the set of all oriented segments in E3. We say that the oriented 
segment AB

- →--
 is equivalent to the oriented segment CD

- →--
, and we write  

AB CD
- →-- - →--

≡ , iff they have the same length and the same orientation.
Or, equivalently,

Definition 3.1.2′
The oriented segment AB

- →--
 is equivalent to the oriented segment CD

- →--
,  

(AB CD
- →-- - →--

≡ ), iff the segments AD  and BC have a common midpoint (Figure 3.5).
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FIGURE 3.3

3

1 2

FIGURE 3.2

2

1

FIGURE 3.1
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Example 3.1.1
If AB CD
- →-- - →--

≡ , then AC BD
- →-- - →--

≡ . Indeed, if AB CD
- →-- - →--

≡ , then AD and BC have a 
common midpoint, and therefore AC BD

- →-- - →--
≡  (Figure 3.6). ■

Definition 3.1.3
Let S be the set of all oriented segments in E3, then we call the class [ ]AB

- →--
 of 

all oriented segments equivalent to AB
- →--

 a vector, and we designate it by 


a or a 
lower case boldface letter:

a = =   = ≡{ }- → -→→ → -→→ → -→→ → -→→
a AB Q PQ ABP |

From the definitions and the figures above, it is evident that AB BA
- →-- - →--

≠ .
All this inspires us to say:
Every vector in ordinary 3- dimensional space is a representative of an infinite 

family of vectors with the same magnitude1 (length) and the same direction 
(Figure 3.7).

FIGURE 3.5

FIGURE 3.4
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The following proposition holds:

Proposition 3.1.1
The relation “≡”on S is an equivalence relation. That is, it is:

(i) reflexive, i.e. AB AB
- →-- - →--

≡ , for all AB
- →--

∈ S;
(ii) symmetric, i.e. if AB CD

- →-- - →--
≡ , then CD AB

- →-- - →--
≡ , for all AB CD

- →-- - →--
, ∈ S;

(iii) transitive, i.e. if AB CD
- →-- - →--

≡  and CD EF
- →-- - →--

≡ , then AB EF
- →-- - →--

≡ , for all  
AB CD EF
- →-- - →-- - →--

, , ∈ S.

So, to repeat, we will consider two vectors as “equal” iff they have the same 
magnitude and the same direction.

Definition 3.1.4
The set of all equivalent classes S/ ≡ of oriented segments obeying A.1 –  A.8 
in Definition 2.3 is called the (3- dimensional) vector space V V  .

Proposition 3.1.2

Let AB
- →--

∈S be any vector. Then for any point C ∈E3 there exists a unique point 
D ∈E3 such that AB CD

- →-- - →--
≡ .

vector 
FIGURE 3.7

FIGURE 3.6
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Proof
Obviously, if A B= , then D C= . Suppose A B≠ , and let M be the midpoint of 
BC, (Figure 3.6). Then choose a point D such that M is also the midpoint of 
AD. By Definition 3.1.2',

 AB CD
- →-- - →--

≡ . ■

Proposition 3.1.3

(i) AB CD
- →-- - →--

≡  iff AC BD
- →-- - →--

≡  iff BA DC
- →-- - →--

≡ ;
(ii) If AB AC

- →-- - →--
≡ , then B C= ;

(iii) If AB A B
- →-- - →----

≡ ’ ’ and BC B C
- →-- - →----

≡ ’ ’, then AC A C
- →-- - →----

≡ ’ ’.

Proof
Let’s prove (iii):

From (i) it follows that if AB A B
- →-- - →----

≡ ’ ’, then AA BB’ ’
- →--- - →--

≡ . Also, if BC B C
- →-- - →----

≡ ’ ’, then 
BB CC’ ’
- →-- - →---

≡ . Since ≡ is equivalence relation, it is transitive, so it follows that 
AA CC’ ’
- →--- - →---

=  and therefore AC A C
- →-- - →----

≡ ’ ’.
Analogously one can prove (i) and (ii). ■

Proposition 3.1.4
Let a E= ∈a 3 be any vector, and let A be any point in E3. Then there exists a 
unique point B ∈E3 such that [ ]AB

- →--
= a.

Proof
Let a = [ ]CD

- →--
. By Proposition 3.1.2 there exists a unique point B ∈E3 such that 

CD AB
- →-- - →--

= . Hence a = [ ]AB
- →--

. ■

From now on, in order to simplify the writing and to be in notational 
agreement with the linear algebra of n- dimensional vector spaces, all vectors 
will be designated by boldface Latin letters, a b x y z, , , , ,… , while scalars will 
be designated by regular print Greek letters α β γ, , ,….

Also, as will be explained in more detail later and to simplify operations 
with vectors, one often chooses the Cartesian coordinate system whose 
origin coincides with the tail of a given vector. To illustrate this let’s do 
the following:

Consider the vector a shown in Figure 3.8 and place the origin of the coord-
inate system (not necessarily Cartesian) at the point A, or, equivalently, 
without changing the magnitude and the direction, move the vector a = AB

- →--
 

so that its tail coincides with the origin of the coordinate system. Let’s call 
this vector a’  (Figure 3.8).

By simple inspection we notice that the coordinates of the tail of the 
vector a’  are 0 0,( ) and the coordinates of the tip, i.e. the point ′B , are  
( , , )’ ’β β1 2 = ( , )β α β α1 1 2 2− − .
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We say that vectors a and ′a  are isomorphic.
Finally, as the reader may find it more convincing, let’s specify the 

points as, say, A 2 3,( ) and B 5 6, .( )  Then the vector AB
- →--

 =  3 3,( )
- →----

, as is the 
vector O B A−( ) = ( )

- →--------- - →----
3 3, .

It is evident that (any) vector OB’
- →---

 with its tail located at the origin is com-
pletely determined by its end point. We will call this vector the radius- vector 
or position vector r (Figure 3.9).

Remark:
(i) It is customary that the components of a vector r � in the Cartesian coord-

inate system are written simply as x y,  and z, i.e. we write r = ( )x y z, , .

3

2

FIGURE 3.9

1

FIGURE 3.8
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(ii) At this point the reader might already have anticipated that any  
vector, with adequate adjustments, can be represented as a radius  
vector. In other words, we can always move a vector in space so that  
its tail is at the origin while keeping its magnitude and orientation the  
same (cf. Definition 3.1.2 and the following propositions). So, the set  
of radius vectors, say, a b c d e f= = = = = =OA OB OC OD OE OF

- →-- - →-- - →-- - →-- - →-- - →--
, , , , ,   

with O 0 0 0, ,( ) as their origin in VV   would look something like  
Figure 3.10:

Definition 3.1.5
Let a = ∈[ ]AB

- →--
VV   be any vector. We say that the number a AB= =a

- →--
 

representing the length of a is the magnitude or modulus of a.

Definition 3.1.6
By the null- vector we mean the vector

0 = =
→ - →--
0 AA.

To be slightly more precise, and in accordance with Definition 3.1.3:

0 = = ∈ ∈
→ - →--
0 3{ | }.AA AV E

We consider the direction of the null- vector to be indeterminate, and, of 
course,

0 = 0.

FIGURE 3.10
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3.2  Multiplication of a Vector by a Scalar

Definition 3.2.1
Let λ ∈R be any scalar and a ∈VV   any vector.

Then the product of the vector by a real number (a scalar) λ is the mapping

m : R × →V V

defined by

m λ λ, .a a( ) =

The product λa is a vector such that λ λ λa a= = a. It follows that:

(i) 1⋅ =a a;
(ii) λa = 0  iff λ = 0 or a = 0 ;

(iii) λa a= −  if λ = −1;
(iv) λ λa a= ;
(v) λ µ λµa a( ) = ( ) ;

(vi) λ µ λ µ+( ) = +a a a.

Thus, if a ≠ 0 and λ > 0, λa has the same direction as a. Of course, if a ≠ 0 and 
λ < 0, then λa has the opposite direction to a (Figure 3.11).

Example 3.2.1
Let’s prove (ii) from the above definition.

Take a ∈VV   to be any vector. Then, λa = 0 iff a = 0 or λ = 0. Indeed,

 λ λ λ λ λa a a aa= ⇔ = ⇔ = ⇔ = =( ) ⇔ = =( )0 00 0 0 0 0or or . ■

Exercise 3.2.1
Prove (iii) –  (vi) above.

3.3  Collinear and Coplanar Vectors

Definition 3.3.1
Two, nontrivial, vectors a and b (i.e. a b≠ ≠0 0, ) are said to be collinear if there 
exists a number (a scalar) λ ∈R such that a b= λ  (Figure 3.11). In other words, 
a and b are collinear when they are parallel to the same line. Analogously, one 
can define the collinearity of n vectors.
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We will accept the convention that the zero vector (null- vector) is collinear  
with any vector.

We say that two vectors a = OA
- →--

 and b = OB
- →--

 have the same direction if the 
points A and B lying on the line OAB are on the same side of the point O. 
V ice versa, if A and B are on opposite sides of O, then a and b have opposite 
directions.

From the above, it follows that every vector is uniquely determined by its 
magnitude (modulus) and its direction.

Definition 3.3.2
n vectors are said to be coplanar if they lie in the same plane (that is, if they 
are parallel to the same plane) (Figure 3.12).

Of course, if r r r1 2, , ,…{ } ∈n VV   (0), n ≥ 2, is any (finite) set of radius- vectors 
such that ri iOA=

- →---
, i n= …1, , , then r r r1 2, , , n are coplanar if the points 

O A A An, , , ,1 2   lie in the same plane (Figure 3.13).

FIGURE 3.12

FIGURE 3.11
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3.4  Addition of Vectors

Definition 3.4.1 (Addition of vectors)
Let VV   be a 3- dimensional space and a, b ∈VV   be any two vectors. We call the 
binary operation

s :V V V× →

defined as

s a b a b c,( ) = + =

the addition of vectors. The sum a b c+ =  is formed by placing the tip of a 
on the tail of b and then joining the tail of a to the tip of b. This is sometimes 
called the “tip- to- tail rule” (Figure 3.14).

To put it differently, given two vectors a and b we can always translate one 
of them, say b, so that its initial point (tail) coincides with the terminal point 
(tip) of a. Then the vector c, with the same initial point as a and the same ter-
minal point as b, is considered as the sum of a and b, i.e.

c a b= +

FIGURE 3.13
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Of course, the same result would be obtained if, instead of placing the tip of  
a on the tail of b, we place the tip of b on the tail of a and then join the tail of  
b to the tip of a.

Yet another way to “visualize” the addition of vectors is to join the tails of a 
and b and form the corresponding parallelogram whose diagonal represents 
the sum a b+  (Figure 3.15(i)).

We can add n vectors following the same rule (Figure 3.15(ii)):

a b c d e f .+ + + + + = σ

Exercise 3.4.1
Let a ∈VV    be any vector. Show that

2 3a a a+ = .

σ

FIGURE 3.15(ii)

FIGURE 3.15(i)

FIGURE 3.14
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Exercise 3.4.2
Let a b c, , ∈VV    be any three vectors. Show that

c b a c b a−( ) + −( ) + −( ) = 0.

Exercise 3.4.3
Let A A An1 2, , ,  be n points in VV    . Show that

A A A A A A A An n n1 2 2 3 1 1

- →---- - →----- - →------- - →-----
+ +…+ + =− 0.

Definition 3.4.2
Let A a a a B b b b1 2 3 1 2 3, , , , ,( ) ( ) and O 0 0 0, ,( ) be any three points in VV    (without 
loss of generality we choose O to be the origin of our coordinate system). 
Then, with

a = = − − −( ) = ( )OA a a a a a a
- →--

1 2 3 1 2 30 0 0, , , , ,

b = = − − −( ) = ( )OB b b b b b b
- →--

1 2 3 1 2 30 0 0, , , , ,

we define

a b+ = + = =
= ( ) + ( )
= + +

OA OB OC
a a a b b b
a b a

- →-- - →-- - →--
c

1 2 3 1 2 3

1 1 2

, , , ,
, bb a b OC2 3 3, .+( ) = =

- →--
c

Proposition 3.4.1
Addition of vectors is commutative operation, i.e. for any a b, ∈VV  ,

a b b a+ = + .

Proof
Left to the reader. ■

Consequently, we see that, given any two vectors a, b ∈VV    , by the difference 
a b−  we mean (Figure 3.16(i)):

a b a b a b− = + −( ) = + −( )1 .

Another way to look at this is sketched in Figure 3.16(ii).

Definition 3.4.3
Let a ∈VV    be any non- zero vector. We say that a and −a are a pair of opposite 
vectors (additive inverses of each other), that is

a a a a+ −( ) = −( ) + = 0.
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We say that the null- vector 0 is the additive identity (the neutral element with  
respect to addition).

Exercise 3.4.4
Show that

− −( ) =a a.

Exercise 3.4.5
Let a, �0 ∈VV    and 0 ∈R. Show that

(i) a a a+ = + =0 0 ;
(ii) 0 ⋅ =a 0 .

Exercise 3.4.6
Show that the sum of the vectors from the center of a regular pentagon to its 
vertices is a null- vector.

Example 3.4.1
Show that for any λ ∈R and any a b, ∈VV    

λ λ λa b a b+( ) = + .

FIGURE 3.16(ii)

FIGURE 3.16(i)
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Solution
We will assume that λ ≠ 0 (otherwise the claim would be trivial), and suppose 
that a = OA

- →--
 and b = AB

- →--
 do not have the same orientation. Then, by the defin-

ition of addition (Figure 3.17),

a b c+ = = OB
- →--

.

Let λa = ′OA
- →---

. Notice that the points O A,  and A ’ are collinear. If we choose 
the points B B, ’ and O to be collinear then the triangles ΔOAB and ΔOA B’ ’ are 
similar. It follows that AB A B|| ’ ’, and therefore A B AB’ ’

- →---- - →--
= λ = λb.

On the other hand, the similarity of ΔOAB and ΔOA B’ ’ also implies that 
OB OB’ = λ , and thus OB OB’

- →-- - →--
= =λ λb.  So we have

 λ λ λ λa b a b+ = + = = = +( )′OA A B OB OB’ ’ ’
- →--- - →--- - →--- - →--

. ■

Exercise 3.4.7
Show that

− +( ) = − −a b a b.

Example 3.4.2
Show that

a b b a− = − −( ).

Solution

 

a b a b
b a
b a
b a

b a

− = + −( )
= −( )⋅ +
= −( )⋅ + −( ) −( )
= −( ) −( )
= − −( )

1
1
1 1 1
1

.  ■

λ
FIGURE 3.17
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Example 3.4.3
Show that for any λ µ ν, , ∈R and any a b c, , ∈VV  

λ µ λ µ ν µ λ ν λ+( ) −( ) − +( ) + −( ) = − +( ) −a b a c b a b c.

Solution

 

λ µ λ µ ν λ µ λ µ λ λ µ ν
λ µ λ

+( ) −( ) − +( ) + −( ) = +( ) − +( ) − − + −
= + −

a b a c b a b a c b b
a a bb b a c b b
a b b c
a b c

− − − + −
= − − −
= − +( ) −

µ λ λ µ ν
µ λ ν λ
µ λ ν λ .  ■

Exercise 3.4.8
Let a = OA

- →--
 and λ ∈R. Show that λ λa a= .

Exercise 3.4.9
Let a = OA

- →--
 and b a= =OB

- →--
λ , with λ ∈R. Show that AB

- →--
= −b a .

As a simple exercise the reader should prove the following:

Proposition 3.4.2
If a b, ∈VV   are non- zero vectors, then a is parallel to b iff there exists a non- 
zero scalar λ or µ such that a b= λ  or b a= µ .

Example 3.4.4
Show that the line segment MN joining the midpoints of any two sides of a 
triangle ΔABC  is parallel to the third side of the triangle (Figure 3.18).

Solution
Let AB
- →--

= a, AC
- →--

= b, MN
- →---

= c and AN
- →---

= d, where M and N are the midpoints of 
the sides AC and BC, respectively. Then,

d b c

a b a b a

= +

= + −( ) = +

1
2

1
2

1
2

1
2

.

FIGURE 3.18
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Hence c a=
1
2

, i.e., vectors a and c are parallel, i.e. line segments AB and MN 

are parallel. By the way, observe that the length of MN is equal to one- half of 
the length of AB. ■

Proposition 3.4.3
Vector addition is associative, i.e.

a b c a b c a b c+ +( ) = +( ) + = + + .

Proof
The proof is almost trivial. Let O 0 0 0, ,( ), A Bα α α β β β1 2 3 1 2 3, , , , , ,( ) ( )  
C γ γ γ1 2 3, , ,( )  with α β γi i i, , ,∈R  be any four points in VV  . If we choose O to 
be the origin of the coordinate system, then

a b c= = ( ) = = ( ) = =OA a a a OB OC
- →-- - →-- - →--

1 2 3 1 2 3 1 2, , , , , , ,β β β γ γ γand 33( ).

Set

a b c a b c+ +( ) = +( ) + =OT OS
- →-- - →--

and .

We would like to prove that T S= , i.e., that the coordinates of the points T and 
S are the same.

a b c+ +( ) = ( ) + ( ) + ( ) 
= ( ) +

α α α β β β γ γ γ
α α α β

1 2 3 1 2 3 1 2 3

1 2 3 1

, , , , , ,
, , ++ + +( )

= + + + + + +( ) =
γ β γ β γ

α β γ α β γ α β γ
1 2 2 3 3

1 1 1 2 2 2 3 3 3

, ,
, , .OT

- →--

a b c+( ) + = + + +( )  + ( )
= + + + +

α β α β α β γ γ γ
α β γ α β

1 1 2 2 3 3 1 2 3

1 1 1 2 2

, , , ,

, γγ α β γ2 3 3 3, .+ +( ) = OS
- →--

So, the coordinates of T  and S are the same, i.e.

S
T
α β γ α β γ α β γ

α β γ α β γ α β γ
1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

+ + + + + +( ) =
+ + + + + +(

, ,
, , )).

Hence

a b c a b c a b c+ +( ) = +( ) + = + + .

A graphical “proof” would look something like this:
If a, b and c are as in Figure 3.19(i), then a b c+ +( ) is pictured in Figure 3.19(ii) 

and a b c+( ) +  in Figure 3.19(iii).
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FIGURE 3.19(i)

FIGURE 3.19(ii)

FIGURE 3.19(iii)
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Another way to depict associativity is sketched in the following figure  
(Figure 3.4.20(i), (ii)). ■

Once the associativity and commutativity of the addition of three vectors is 
established, it is easy to accept that the same holds for n vectors, i.e.

i

n

i k k k n

k k n

=
− +

+

∑ = + +…+ + + +…+( )
= + +…+( ) + +

1
1 2 1 1

1 1 2

a a a a a a a

a a a a a

( )

++…+( )−ak 1 .

Example 3.4.5
Show that

a b c d b d a c+( ) + +( ) = +( ) +  + .

FIGURE 3.20(ii)

FIGURE 3.20(i)
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Solution

 

a b c d a b d c
a b d c

a b d c
b d

+( ) + +( ) = +( ) + +( )
= +( ) +  +
= + +( )  +
= +( ) + aa c  + . ■

Example 3.4.6
Show that

a b c a b c− +( ) = −( ) − .

Solution

 

a b c a b c
a b c
a b c
a

− +( ) = + −( ) +( )
= + −( ) + −( ) 
= + −( )  + −( )
= −

1
1 1
1 1

bb c( ) − .  ■

Example 3.4.7
Let M be the midpoint of a segment AB, and let O be any point in space 
(Figure 3.21). Show that

OM OA OB
- →--- - →-- - →--

= +
1
2

1
2

.

Solution
From Figure 3.21 we see that

OA AB OB
- →-- - →-- - →--

+ =

FIGURE 3.21
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OM AB OB
- →--- - →-- - →--

+ =
1
2

OA AB OM
- →-- - →-- - →---

+ =
1
2

.

Thus

OM OB AB
- →--- - →-- - →--

= −
1
2

and

OM OA AB
- →--- - →-- - →--

= +
1
2

So

2OM OA OB
- →--- - →-- - →--

= +

Hence

 OM OA OB
- →--- - →-- - →--

= +
1
2

1
2

. ■

Example 3.4.8
Show that the diagonals of a parallelogram bisect each other.

Solution
Consider the parallelogram ABCD shown in Figure 3.22,

where a = AB
- →--

 and b = AD
- →--

. If the diagonals of a parallelogram bisect each  
other, and M and Nare the midpoints of AC and BD, respectively, then M  
and N have to coincide, i.e. M N= . If M and N are the midpoints of AC and  
BD, then

C

FIGURE 3.22

 

 

 

 

 

 

 

 

 

 



Three- dimensional Vector SpaceVV 29

29

AM AC
- →--- - →--

=
1
2

,

and

AN
- →---

= +
1
2

1
2

a b.

But

AC
- →--

= +a b.

Thus,

AM AC AN
- →--- - →-- - →---

= = +( ) =
1
2

1
2

a b .

Therefore, M N= . ■

Proposition 3.4.4
The points A B,  and P are collinear iff, for any point O in space,  
OP m OA mOB
- →-- - →-- - →--

= −( ) +1 .

Proof
Let O A B, ,  and P be points as shown in Figure 3.23, such that P divides the 
line segment AB in the ratio m n: . Then,

OP OA AP OA mAB
OA m OB OA

- →-- - →-- - →-- - →-- - →--
- →-- - →-- - →--= + = +

= + −( ))
= −( ) +1 m OA mOB

- →-- - →--
.

FIGURE 3.23
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Conversely, if

OP m OA mOB
- →-- - →-- - →--

= −( ) +1 ,

Then

OP OA m OB OA
- →-- - →-- - →-- - →--

− = −( ) ,

i.e.

AP mAB
- →-- - →--

= .

Thus, AP
- →--

 is collinear to AB
- →--

, so the line segment AP lies along line segment  
AB, and therefore points A B,  and P are collinear. ■

Example 3.4.9
Let P divide AB in the ratio m n: , with m n, > 0, and let O be any point in space 
(Figure 3.23) with OA A

- →--
= r , OP P

- →--
= r  and OB B

- →--
= r . Show that

r r rP A Bm n
n m=

+
+( )1

.

Solution
Let OA A

- →--
= r , OP P

- →--
= r  and OB B

- →--
= r .

Then
AP P A

- →--
= −r r  and PB B P

- →--
= −r r .

On the other hand, by our assumption, AP m
n PB

- →-- - →--
= ( ) , so

n mP A B Pr r r r−( ) = −( ).

It follows that

n m n mP P A Br r r r+ = + ,

n m n mP A B+( ) = +r r r .

Thus

 r r rP A Bn m
n m=

+
+( )1

.
 

■

Example 3.4.10
Let ΔABC be a triangle whose vertices are specified by the position vectors 
r rA B,  and rC (Figure 3.24). Furthermore, let L M,  and N be the midpoints of the 
sides BC CA,  and AB, respectively. Show that the medians of the triangle are 
concurrent at the centroid M of the triangle.
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Solution

From the figure we see that L has the position vector l r r= +( )1
2 B C , M has 

the position vector m r r= +( )1
2 A C  and N has the position vector n r r= +( )1

2 A B . 

Now the point which divides AL in the ratio 2 1: , according to the result from 
previous example, has the position vector

1
2 1

1 2
1
3

2
1
2

1
3

+
⋅ + ⋅( ) = + ⋅ +( )





= + +( )

r l r r r

r r r

A A B C

A B C .

The point which divides BM  in the ratio 2 1:  has the position vector

1
2 1

1 2
1
3

2
1
2+

⋅ + ⋅( ) = + ⋅ +( )





r m r r rB B A C

= + +( )1
3

r r rA B C .

Thus, the point which divides CN  in the ratio 2 1:  has the position vector

1
2 1

1 2
1
3

2
1
2+

⋅ + ⋅( ) = + ⋅ +( )





r n r r rC C A B

= + +( )1
3

r r rA B C .

FIGURE 3.24
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Therefore, the point M, i.e. the centroid of the triangle, has the position vector
 

1
3

r r rA B C+ +( ) and lies on all three medians of the triangle. ■

Definition 3.4.4
A set of vectors a a a1 2, , , n from an n- dimensional vector space VV   is said to 
be linearly independent if

α α α1 1 2 2a a a+ +…+ =n n 0

only if α α α1 2 0= = … = =n .

Exercise 3.4.10
Determine whether or not the following vectors are linearly independent:

(i) a b= ( ) = ( )π, , , ;0 0 1
(ii) a b c= ( ) = ( ) = ( )0 1 1 0 2 1 1 5 3, , , , , , , , .

Exercise 3.4.11
Determine whether the vectors

x a b c y a b c z a b c= + + = + − = + +2 3 2 4, and 

are linearly dependent or independent.

Exercise 3.4.12
Let a and b be two linearly independent vectors, and let

c a b= +α β

where α β, ∈R. Express α and β in terms of a b,  and c .

Definition 3.4.5
Let c ∈VV   be any non- zero vector such that

c a a a a= + +…+ ∈ ∈α α α α1 1 2 2 n n i i, , .V R

We say that c  is a linear combination of vectors a a a1 2, , , . n

Proposition 3.4.5
Let a b, ∈VV   be any two vectors, and let α β, ∈R, such that

c a b= +α β .

Then a b,  and c are coplanar (Figure 3.25).
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Proof
The proof follows immediately from the definition of vector addition. ■

Proposition 3.4.5'
Let a b, ∈VV   be any two non- collinear vectors, and let c ∈VV   be a vector that 
is coplanar with a and b. Then there exist α β, ∈R such that

c a b= +α β .

Subsequently, we have

Proposition 3.4.6
If a b, ∈VV   are two non- zero, non- collinear vectors, such that α βa b+ = 0, with 
α β, ,∈R  then α β= = 0.

Proof
Suppose α ≠ 0. Then

α βa b= − ,

and therefore

a b= −
β
α

.

implying that a and b are collinear, contrary to our hypothesis. Thus α = 0,
and therefore

βb = 0.

Since b ≠ 0 , it follows that β = 0. ■

FIGURE 3.25
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Proposition 3.4.7
If a b c, , ∈VV   are three non- coplanar, non- zero vectors such that  
α β γa b c+ + = 0, then α β γ= = = 0, i.e. they are linearly independent.

Proof
Suppose that α ≠ 0. Then

α β γa b c= − − ,

and therefore

a b c= − −
β
α

γ
α

.

implying that a is coplanar with b and c. But that contradicts our original 
hypothesis that a b,  and c  are non- coplanar. Hence α = 0, and β γb c+ = 0. By 
Proposition 3.4.6, β γ= = 0. So, indeed, α β γ= = = 0.

Note also that, given three non- coplanar vectors a b c, , ∈VV  , no two of them 
can be collinear. ■

Proposition 3.4.8
If a b c, , ∈VV   are three non- zero and non- coplanar vectors, and if x is any other 
vector in VV  , then x can be expressed as a linear combination of a, b, and c, i.e.

 x a b c= + + ∈α β γ α β γ, , , .R  ■

Proof
If x = 0 there is nothing to prove –  by the previous proposition α β γ= = = 0 
and the claim of the proposition is obvious. If x ≠ 0 and α = 0, then x b c= +β γ .  
This means that x is coplanar with b and c, contrary to our original hypoth-
esis. Thus, α ≠ 0. Similarly we show that β ≠ 0 �and γ ≠ 0. Hence,

x a b c= + +α β γ .

3.5  Basis of a Vector Space

Definition 3.5.1
Let B b b b= { }1 2 3, ,  be an ordered triple of non- coplanar vectors from some 
3- dimensional space VV  . We say that B is a basis of the space VV   if any a ∈
VV   can be uniquely represented as a linear combination of vectors from B, i.e.

a b b b= + + ∈α α α α1 1 2 2 3 3 , .i R
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Since the set of any three non- coplanar vectors from VV   forms a basis for 
VV   it is evident that there are infinitely many bases of VV  . However, once 
a basis B is selected, the components α α α1 2 3, ,  of the vector a are unique 
with respect to this basis, and we often represent the vector by simply 
writing a = ( )α α α1 2 3, , .

Proposition 3.5.1
if a b c, ,  are three linearly independent vectors from a 3- dimensional space VV  , 
then any vector x ∈VV   can be uniquely expressed as a linear combination of 
a b,  and c . This makes the set a b c, ,{ } a basis for VV   .

Proof
By Proposition 3.4.8, any vector x ∈VV   can be expressed as a linear combin-
ation of a,b, and c. Suppose that there are two representations of the vector x ,

x a b c a b c= + + = + +α β γ α β γ1 1 1 2 2 2 .

Then,

α α β β γ γ1 2 1 2 1 2−( ) + −( ) + −( ) =a b c 0.

Since a,b, and c are linearly independent,

α α
β β
γ γ

1 2

1 2

1 2

0
0
0

− =
− =
− =

,
,
,

i.e.

α α
β β
γ γ

1 2

1 2

1 2

=
=
=

,
,
.

Hence, x is uniquely represented as a linear combination of vectors a b c, , , and 
the set a b c, ,{ } is a basis for VV  . ■

Corollary 3.5.1
Any set a b c, ,{ } of three non- coplanar non- zero vectors in 3- dimensional 
VV   is a basis of VV  .

Corollary 3.5.2
(i) Let S ⊆VV   be a set containing the zero vector. Then S  is linearly 

dependent.
(ii) Two vectors a b, ∈VV   are linearly independent iff they are non- collinear.
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(iii) Three vectors a b c, , ∈VV   are linearly independent iff they are 
non- coplanar.

(iv) If A  ⊆B is a linearly dependent set of vectors, then B is also a lin-
early dependent set.

(v) If B is a linearly independent set of vectors and A  ⊆ B , then A  is 
also a linearly independent set.

Example 3.5.1
Suppose we choose the set E e e e= = ( ) = ( ) = ( ){ }1 2 31 0 0 0 1 0 0 0 1, , , , , , , , . Readers  

can easily convince themselves that E is a basis of the 3- dimensional space VV  , 

and this is called the canonical basis. Then, some vector, say, x = −





2
2
3

5, ,  

expressed in the basis E is

 x e e e e e e= + − = + −x x x1 1 2 2 3 3 1 2 32
2
3

5 . ■

Proposition 3.5.2
Let B b b b= { }1 3 3, ,  be a given basis for VV  , and let x y, ∈VV    be any two vectors 
whose representations in basis B are

x b b b

y b b b

= + +
= ( ) ∈
= + +
=

x x x
x x x x

y y y
y y y

i

1 1 2 2 3 3

1 2 3

1 1 2 2 3 3

1 2 3

, , , ,

, ,

R

(( ) ∈, .yi R

Then

( ) , , , ,
( )

i x y
b b b

+ = ( ) + ( )
= + + +( ) + +( )

x x x y y y
x y x y x y

1 2 3 1 2 3

1 1 1 2 2 2 3 3 3

== + + +( )x y x y x y1 1 2 2 3 3, , .

(ii) , ,λ λ
λ λ λ λ
λ

x
b b b b b b

= ( )
= + +( ) = + +
=

x x x
x x x x x x
x

1 2 3

1 1 2 2 3 3 1 1 2 2 3 3

1 ,, , , .λ λ λx x2 3( ) ∀ ∈R

In particular,

− = −( ) = − − −( )x x1 1 2 3x x x, , .

Notice, also, that two vectors x = ( )x x x1 2 3, ,  and y = ( )y y y1 2 3, ,  are collinear if
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x x x y y y1 2 3 1 2 3: : : : .=

In general, if B b b b= …{ }1 2, , , n  is a basis of an n- dimensional vector space X, 
and x Xi ∈ , i m= …1,  are any vectors such that

x b b bi i i in n
j

n

ij j ij= + +…+ = ∈
=
∑α α α α α1 1 2

1

, ,Φ

then

i

m

i m
i

m

j

n

ij j
= = =
∑ ∑∑= + +…+ =

1
1 2

1 1

x x x x bα .

Similarly, if

x a b
i

n

i i= ∈
=
∑

1

, ,α i Φ

then

λ λ α λαx b b= =
= =
∑ ∑
i

n

i i
i

n

i i
1 1

.

Exercise 3.5.1
(i) Express x = ( )4 3,  as a linear combination of the vectors b1 2 1= ( ),  and 

b2 1 0= −( ), .
(ii) Express x = ( )1 1 1, ,  as a linear combination of the vectors b1 0 1 1= −( ), , , 

b2 1 1 0= ( ), ,  and b3 1 0 2= ( ), , .

Exercise 3.5.2
Let b1 and b2 be basis vectors of some 2- dimensional vector space. Find 
another set of basis vectors, say, b1

’ and b2
’ .

Note

1 By the “magnitude” (or “modulus”) of a vector a = AB
- →--

, we mean the “length” 
of a, i.e. the number obtained by measuring the length of AB

- →--
, and we write 

|AB a
- →--

| .= =a  The precise definition of “magnitude” will be given shortly.
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4
Vectors in R3 Space

Before one embarks on the study of the highly axiomatized n- dimensional 
(vector) algebra, the study of vectors in the 3- dimensional space R3 may 
prove to be useful, as the 3- dimensional model will serve nicely to give a 
“feel” for the higher- dimensional analogues of R3.

Indeed, if we replace the abstract space VV  from the previous chapter by 
R3, all the axioms of a vector space are satisfied, and we are justified in incorp-
orating all the operations from VV  into R3.

4.1  i, j,k{ }- basis of R3  Space

For convenience we will use the right- handed rectangular Cartesian coordinate 
system. In this system we choose as our basis a particular set of vectors i j, , 
and k, having directions of the positive X Y, , and Z axes with respective 
components ( , , ), ( , , ), ( , , )1 0 0 0 1 0 0 0 1 , i.e.

i
j
k

= ( )
= ( )
= ( )

1 0 0
0 1 0
0 0 1

, , ,
, , ,
, , .

We call the set B i, j, k= { }  the orthonormal basis (canonical basis) of the  
3- dimensional space R3 .

By right- handedness we mean that a rotation by an angle from i to j 
(indicated by the rotation arrow in Figure 4.1), accompanied by a translation 
in the direction of k, gives a right- hand screw motion.
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Proposition 4.1.1
The unit vectors i j,  and k are linearly independent and they span the 
space R3 .

Exercise 4.1.1
Prove Proposition 4.1.1.

Definition 4.1.1
If a is a vector with its initial point –  its tail –  at the origin of the Cartesian 
coordinate system, and ( , , )α α αx y z  are the coordinates of its terminal point 
(its tip) (Figure 4.2), then a is uniquely represented as a linear combination of 
the unit vectors i j, , and k, i.e.

a j ki= + +α α αx y z

FIGURE 4.2

FIGURE 4.1
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The vectors a ix = αx , a jy = αy , and a kz = αz  are called the rectangular (vector) 
components of the vector a.

Clearly the following is true:

Proposition 4.1.2

a b= = = =iff α β α β α βx x y y z z, , .

The magnitude or the norm of a vector in general 3- space has already been 
mentioned several times. Now we define it formally for R3.

Definition 4.1.2
Let a be any vector in R3. We say that the magnitude, modulus or norm, a  of 
a vector a is a number a ∈R representing the length of a, i.e., if a = AB

- →--
, then

a = = =AB AB a
- →--

.

Thus, for the Cartesian coordinate system we have:

Definition 4.1.3
Let a i j k= + +α α αx y z  be any vector in R3. The magnitude of a is the number

a x y z= = + +a α α α2 2 2 .

Example 4.1.1
Let’s first consider a vector in R2 (Figure 4.3):

Applying Pythagoras’ theorem to the triangle ∆Oa Ax , we see that the length 
a, i.e., the magnitude of a, is

a x y= = +a α α2 2 .

FIGURE 4.3
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It is not difficult now to extend this to three dimensions (Figure 4.4):

 a x y z= = + +a α α α2 2 2 . ■

Example 4.1.2
Let a i j k= + +α α αx y z  be a vector in R3 (Figure 4.4).
Then

a = OP,

with

OA OB QPx y z= = =α α α, , .

By Pythagoras’ theorem

OP OQ QP( ) = ( ) + ( )2 2 2

and

OQ OA OB( ) = ( ) + ( )2 2 2
.

Thus

OP OQ QP

OA OB QP

( ) = ( ) + ( )
= ( ) + ( ) + ( )

2 2 2

2 2 2
.

FIGURE 4.4
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In other words,

a 2 2 2 2= + +α α αx y z .

So,

a x y z= = + +a α α α2 2 2 .

For example, if a i j= +2 3 , then

a x y= = + = + =a α α2 2 4 9 13,

and if a i j k= + +2 3 4 , then

a x y z= = + + = + + =a α α α2 2 2 4 9 16 29
■

Now it is obvious that

i = + + =1 0 0 12 ,

and, similarly, for j  and k . Of course,

0 = + + =0 0 0 0i j k .

Definition 4.1.4
A unit vector a0  is a vector whose magnitude is 1, i.e., if a ∈R3 is any vector 
such that a ≠ 0, then

a
a

0 =
a

is a unit vector with the same direction as a.
Indeed,

| | .a a a0
1 1 1

1= = = =
a a a

a

Exercise 4.1.2
Find the unit vectors a0, b0 and c0 if

(i) a i j k= + −2 2  and b i j k= + +2 2 2 ;

(ii) a = ( )1 2 1, , , b = −( )2 2 1, ,  and c = 





3
5

0
4
5

, , .
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Exercise 4.1.3
Show that, while i j,  and k are (obviously) non- coplanar, i i j, ,+  and i j−  are 
coplanar.

Remark 4.1.1
We have said before that a vector a � is uniquely represented once a triple 
( , , )α α αx y z  is given, meaning that we can determine its magnitude and its 
direction. At this point it is irrelevant whether the components of the vector 
are written in a row or in a column.1

Remark 4.1.2
As a reader might have anticipated by now, we can generalize the concept of 
the magnitude of vector to the n- dimensional case, and state:

If x x xn1 2, , ,… ∈R are the coordinates of a vector x ∈Rn, then by the magni-
tude of x we mean the number

x = + +…+x x xn1
2

2
2 2 .

Exercise 4.1.4
Let x = ( , )x x1 2  and y = ( , )y y1 2  be two vectors from R2. Show that if 
x y x y1 2 2 1 0− = , then x and y are linearly dependent, and if x y x y1 2 2 1 0− ≠  they 
are linearly independent.

Exercise 4.1.5
Let a b, ∈R3. Show that

a b a b− = + − + +2 2 2 2( ).α β α β α βx x y y z z

4.2  Multiplication by a Scalar and Addition of Vectors  
in R3 Space

Definition 4.2.1 (Multiplication by a scalar)
Let a ∈R3 be any vector and λ ∈R be any scalar. Then

λ λ α α α
λα λα λα
λα λα λα

a i j k
i j k

= + +( )
= + +
= ( )

x y z

x y z

x y z, , .

In other words, the components of a scalar multiple of a vector are equal to 
the scalar multiple of the corresponding components of the vector.
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In complete agreement with Definition 3.2.1 we have

 ( )i  If a ≠ 0, then a > 0;
 ( )ii  λ λa a= ;

 ( )iii  For every a ∈R3, − =a a .

Exercise 4.2.1
Let a i j k= + +2 3 . Show that

(i) 3 3 6 9a i j k= + + �;
(ii) − = =a a 14.

Definition 4.2.2 (Addition of vectors in R3)
If a b= ( ) = ( ) ∈α α α β β βx y z x y z, , , , , R3 are any two vectors, with 

α α α β β βx y z x y z, , , , , ∈R, then

a b i j k j k

j

+ = + +( ) + + +( )
= +( ) + +( ) +

α α α β β β

α β α β
x y z x y z

x x y y

i

i αα β

α β α β α β
z z

x x y y z z

+( )
= + + +( )

k

, , .

In general, if x i j kq q q q= + + ∈α β γ R3, , , ,q n= …1 2 , are any n vectors, then

q

n

q
q

n

q
q

n

q
q

n

q

q

n

= = = =

=

∑ ∑ ∑ ∑=








 +









 +











=

1 1 1 1

1

x i j kα β γ

∑∑ ∑ ∑
= =









α β γq

q

n

q
q

n

q, , .
1 1

Since the addition of real numbers is a commutative operation, it is also 
obvious that

a b b a+ = + .

It follows that a b b a+ = + .

Proposition 4.2.1
The components of the sum (difference) of two vectors are equal to the sum 
(difference) of the corresponding components of the vectors.

Example 4.2.1
Let a i j k= + +2 3  and b i j k= − +4 2 . Show that a b b a+ = + .

 

 

 

 

 



Classical Vector Algebra46

46

Solution

 

a b i k i j k
i j k
i

+ = + +( ) + − +( )
= +( ) + −( ) + +( )
= +( ) + − +( )

2 3 4 2
1 4 2 1 3 2
4 1 1 2

j

jj k
i j k i j k

b a i j

+ +( )
= − +( ) + + +( )
= + = + +

2 3
4 2 2 3

5 5k.  ■

Exercise 4.2.2
Let d a b c= − + , with
a i j k b i j k= − + + = − +2 2 3 2, , �  and c i j k= − −2 4 3 . Find d .

As a simple exercise the reader should prove the following:

Proposition 4.2.2
The addition of vectors is an associative operation.

Exercise 4.2.3
Let a i j k= + +2 3 , b i j k= − +4 2  and c i j k= + −5 3 . Show that

a b + c a b c.+ ( ) = +( ) +

Exercise 4.2.4
Let a b, ∈R3 and λ µ, ∈R. Show that

(i) λ λ λa b a b+( ) = + ;
(ii) λ µ λ µa a a+ = +( ) ;

(iii) λ µ λµa a( ) = ( ) .

Definition 4.2.3
Let the position vectors for points A x y z( , , )α α α  and B x y z( , , )β β β  be

a i j k= + +α α αx y z ,

b i k= + +β β βx zy j ,

(Figure 4.5).
Then the distance d A B( , ) between points A and B is

 
d A B

x x y y z z

,

.

( ) = − −( ) × −( )
= −( ) + −( ) + −( )

b a = b a b a

β α β α β α2 2 2
 

■
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Exercise 4.2.5
Find the distance of the point P 3 2 4, , −( ) from the origin O 0 0 0, ,( ).

Example 4.2.2
Determine the coordinates of the point which divides the line segment from 
A 1 2 0, ,−( ) to B 6 8 10, , −( ) in the ratio 2 3: .

Solution
Let point P be as in Figure 4.6,

and let

r i j r i j kA BOA OB= = − = = + −
- →-- - →--

2 6 8 10and .

FIGURE 4.6

FIGURE 4.5
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So

r

i j i j k

P OP OA OB= = +

= −





+ + −

- →-- - →-- - →--3
5

2
5

3
5

6
5

12
5

16
5

20
5




= + −3 2 4i j k

Hence the coordinates of the point P are ( , , ).3 2 4− 2 ■

Exercise 4.2.6
Determine whether or not the points P A B− −( ) ( ) ( )1 1 1 2 3 0 0 1 1, , , , , , , ,  and 
C −( )2 2 2, ,  are coplanar. (Recall: The points are coplanar iff the vectors PA PB

- →-- - →--
,  

and PC
- →--

 are linearly dependent.)
Given the components of a vector a ∈R3 we restate Definition 4.1.4 as

Definition 4.2.4 (Unit vector)
Let a ∈R3 be any vector. We say that the corresponding unit vector a0 in the 
direction of a is a vector

a a

i j k

i

0

2 2 2

2 2 2 2

1
=

=
+ +

+ +

=
+ +

+
+

a
.

α α α

α α α
α

α α α

α

α α

x y z

x y z

x

x y z

y

x y
22 2 2 2 2+

+
+ +α

α

α α αz

z

x y z

j k.

Example 4.2.3
Let a i j k= − + +2 3 5 . Show that

 a0
2
38

3
38

5
38

=
−





, , . 
■

Exercise 4.2.7
Show that a0 from Definition 4.2.4 and a0 from the previous example are 
indeed such that | |a0 1= .
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Example 4.2.4
Find the magnitude of the position vector rP  of the point P 3 4 12, ,−( ) and the 
corresponding unit vector rP0

.

Solution

r i j kP OP= = − +
- →--

3 4 12 .

So,

rP P= = + + =r ,9 16 144 13

and

 r
r
r

r
i j kP

P

P

P

Pr
0

3
13

4
13

12
13

= = = − + .  
■

Example 4.2.5
Let a i j k= − −3  and b i j k= + −2 2 4 . Find a b+( )0.

Solution
Let

c a b i j k i j k i j k= + = − −( ) + + − = + −3 2 2 4 5 5( )

Then

c = = + + =c 25 1 25 51.

Hence

 a b c i k+( ) = = + −0 0
5
51

1
51

5
51

j . 
■

Now that the concept of a vector as an “object” having magnitude and dir-
ection has been introduced, and the rules for the addition of such objects are 
clear to us, we ask: can we equally well define multiplication? Well, unlike 
addition, the concept of a vector does not contain in itself any indication as 
to how the product should be defined. So, in principle, one is free to choose 
a definition that best suits further mathematical and scientific application. Of 
course, the chosen definition has to be consistent with the rules introduced 
earlier. It turns out that, because of their particular nature, vectors can be 
multiplied in two different ways. We start with the scalar product.
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4.3  Scalar (Dot) Product of Vectors

Definition 4.3.1 (Scalar or dot product of vectors)
Let R3 be the real vector space. Then the map

s : R R3 3× → R

called the scalar product or dot product is defined as follows:
For any two vectors a b, ∈R3, with a = a , b = b  and θ = ( ) a b,  being the 

angle between a and b,

a b a,b⋅ = ( ) = ≤ ≤ab abcos cos , .θ θ π0

This product has the following properties:

(i) a b b a⋅ = ⋅ ;
(ii) a b c a b a c⋅ +( ) = ⋅ + ⋅ ;

(iii) λ λ λ λa b a b a b a b⋅( ) = ( )⋅ = ( ) = ⋅( ) ;

(iv) a b⋅ > ≤ <0 0
2

iff θ π  and a b, ≠ 0;

(v) a b⋅ < < ≤0
2

iff
π θ π  and a b, ≠ 0; and

(vi) a b a b⋅ = ⊥0iff

Proposition 4.3.1
The scalar product of two vectors a i j k b i= + + = + + ∈α α α β β βx y z x y z, � R3 is 
equal to the sum of the products of their corresponding components, i.e.

a b⋅ = + +α β α β α βx x y y z z .

Proof

 

a b i j k i j k

i i i i

⋅ = + +( )⋅ + +( )
= ⋅( ) + ⋅( ) + ⋅

α α α β β β
α β α β α β

x y z x y z

x x x y x zj kk

j i j j j k

k i

( ) +
+ ⋅( ) + ⋅( ) + ⋅( ) +
+ ⋅(

α β α β α β
α β
y x y y y z

z x )) + ⋅( ) + ⋅( )
= ⋅ + ⋅ + ⋅ +

α β α β
α β α β α β

z y z z

x x x y x z

k j k k
1 0 0

++ ⋅ + ⋅ + ⋅ +
+ ⋅ + ⋅ + ⋅

α β α β α β
α β α β α β

y x y y y z

z x z y z z

0 1 0
0 0 1

.= + +α β α β α βx x y y z z

 

■

 

 

 

 

 

 



Vectors in R3 Space 51

51

Corollary 4.3.1
If a i j k= + + ∈α α αx y z R3 is any vector, then

a a a

a

2 2 2 2

2

2 2

0
0

= ⋅ = + +
= ⋅ ⋅ =
= = ≥

α α αx y z

a a a
a

,
,cos

.

Let’s emphasize again,

a x y z= ⋅ = + +a a .α α α2 2 2

Let’s prove property (vi) of the scalar product, i.e., let’s prove the following:

Proposition 4.3.2
Let a b≠ ≠0 0,  be any two vectors from R3. Then they are perpendicular iff

a b⋅ = 0.

Proof

Let a b⊥ . Then  a b,( ) =
π
2

, and we have

a b⋅ = =ab cos
π
2

0

Conversely, if a b a b⋅ = ( ) =ab cos , ,0  while a b≠ ≠0 0, � , then cos ,a b( ) = 0. But 

this is possible only if  a b, .( ) =
π
2

 ■

Corollary 4.3.2
Vectors a i j k= + +α α αx y z  and b i j k= + +β β βx y z  are perpendicular iff

α β α β α βx x y y z z+ + = 0.

Exercise 4.3.1
Let a = ( )1 2 3, ,  and b = ( )2 3 5, , . Find a b⋅ .

Exercise 4.3.2
Prove that a a⋅ = 0 iff a = 0.

Exercise 4.3.3

Show that for any a R= ∈( , , )α α αx y z
3 ,
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(i) a i⋅ = αx ;
(ii) a j⋅ = αy ; and
(iii) a k⋅ = αz .

Example 4.3.1
Show that

(i) i i j j k k⋅ = ⋅ = ⋅ = 1; and
(ii) i j j k k i⋅ = ⋅ = ⋅ = 0.

Solution
(i) From Definition 4.3.1,

i i⋅ = ⋅ ⋅ = ⋅ =1 1 0 1 1 1cos .

Similarly for j j⋅  and k k⋅ .

(ii) i j⋅ = ⋅ ⋅ = ⋅ =1 1
2

1 0 0cos
π

.

Similarly for j k⋅  and k i⋅ . ■

Exercise 4.3.4
Prove that if a i a j a k⋅ = ⋅ = ⋅ = 0, then a = 0 .

Remark 4.3.1
It is important to note that the “cancelation law” does not hold for vectors. 
Consider three vectors a b,  and c such that a b c≠ ≠ , and suppose that 
a b a c⋅ = ⋅ . Then

a b a c⋅ − ⋅ = 0.

So, we have

a b c⋅ −( ) = 0,

which means that a is perpendicular to b c−  while b c≠ .

Exercise 4.3.5
Show that a set of any two (three) vectors such that a b⋅ = 0 (or  
a b b c c a⋅ = ⋅ = ⋅ = 0 ) constitute an orthogonal basis for a 2-  (3- )dimensional 
vector space.

Example 4.3.2
Let’s verify (ii) from Definition 4.3.1:
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a b + c i j k i j k i j k

i

⋅ ( ) = + +( ) + +( ) + + +( )





= +

α α α β β β γ γ γ

α α

x y z x y z x y z

x yy z x x y y z z

x x x y y y

j k i j k+( )⋅ +( ) + +( ) + +( )





= +( ) + +

α β γ β γ β γ

α β γ α β γ(( ) + +( )
= + + + + +

= + +

α β γ
α β α γ α β α γ α β α γ

α β α β α β

z z z

x x x x y y y z z z z

x x y y z z

y

(( ) + + +( )
= ⋅ + ⋅

α γ α γ α γx x y z zy

a b a c.

 

■

Exercise 4.3.6
Let a i j k b i k= + + = − +2 3 , ,�  and c i j k= − +2 5 . Find b a c a−( )⋅ −( ).

Proposition 4.3.3
Let a b, ∈R3 be any two vectors. Then,

a +b a b a b= − ⋅ =iff 0.

Proof

 

a b a b a b a b
a a b b a a b b

+ = − ⇔ + = −
⇔ + ⋅ + = − ⋅ +

2 2

2 2 2 22 2

.
⇔ ⋅ =
⇔ ⋅ =

4 0
0

a b
a b�

 

■

Definition 4.3.2 (Direction cosines)
Consider a non- zero vector a ∈R3 and the angles θ φ= ( ) = a i, ,
 a j a k, , ,( ) = ( )ψ  formed with the vector a and the unit vectors i, j and k 
(Figure 4.7).

We say that

cos ,θ =
⋅i a
a

cos ,φ =
⋅j a
a

cosψ =
⋅k a
a

,

are direction cosines. In other words, the direction of a vector a is uniquely 
determined by the angles θ φ, , and ψ.
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Example 4.3.3
If a vector a � is given via its components, i.e. a = ( , , )α α αx y z , we can easily 
determine its direction in R3; that is, we can find out what angles vector a 
makes with the coordinate axes X Y, , and Z in the following way (Figure 4.7).

So, with θ ϕ= ( ) = ( ) a i a j, , ,  and ψ = ( ) a k,  we have

i a
i i j k

⋅ = ⋅ ⋅ =
= ⋅ + + =

1 a a
x y z x

cos cos
( )

ϑ ϑ
α α α α

Thus

 cos .ϑ
α α

α α α
= =

+ +
x x

x y z
a 2 2 2

 (4.1)

Similarly,

j a
i i j k

⋅ = ⋅ ⋅ =
= ⋅ + + =

1 a a
x y z y

cos cos
( ) ;

ϕ ϕ
α α α α

 cos .ϕ
α α

α α α
= =

+ +
y y

x y z
a 2 2 2

 (4.2)

And finally,

k a
k i j k

⋅ = ⋅ ⋅ =
= ⋅ + + =

1 a a
x y z z

cos cos
( )

ψ ψ
α α α α

 cosψ
α α

α α α
= =

+ +
z z

x y z
a 2 2 2

. (4.3)

θ
ϕ

ψ

FIGURE 4.7
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1 2( ) ( ),  and 3( ) are the cosines of the angles that vector a makes with the coordinate 
axes X Y,  and Z. ■

The way to find the angle between any two vectors is illustrated by the 
following two examples.

Example 4.3.4
Find the angle between a i j k= + +α α αx y z  and b i j k= + +β β βx y z .

Solution
From

a b⋅ = ab cosθ

we get

cosθ
α β α β α β

α α α β β β
=

⋅
=

+ +

+ + + +

a b
ab

x x y y z

x y z x y z
2 2 2 2 2 2

Hence

 θ
α β α β α β

α α α β β β
=

+ +

+ + + +













−cos x x y y z

x y z x y z

1

2 2 2 2 2 2
. 

■

Example 4.3.5
Let a i j k= − + +2 3  and b i j k= + +2 2 . Find the angle θ between a and b.

Solution
Since

a b i j k i j k⋅ = − + + ⋅ + +( ) = − + + =( )2 3 2 2 2 6 2 6

and

a b= + + = = + + =4 9 1 14 1 4 4 3and ,

cos .θ =
⋅

= =
a b
ab

6
3 14

2
14

Hence

 θ = −cos 1 2
14

. 
■
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Exercise 4.3.7
Let a i j k= − +2 4 , b i j= +2  and c i j k= − + − 3 . Find

θ = + +( ) a a b c, .2 3

Exercise 4.3.8
Show that the angle between a i j k= − +3 2 6  and b i j k= − − +3 5 8  is 45.

Example 4.3.6
Let a ∈R3 be any vector such that θ φ= ( ) = ( ) a i a j, , ,  and ψ = ( ) a,k . 
Prove that

cos cos cos2 2 2 1θ φ ψ+ + = .

Proof

cos cos cos
a a a

a

x y z

x

x

2 2 2
2 2 2

2

θ φ ψ
α α α

α

+ + = 





+






+ 





= 22 2 2

2

2 2 2

2

2 2 2 1
+ +

+
+ +

+
+ +

=
α α

α
α α α

α
α α αy z

y

x y z

z

x y z

.

Notice (cf. Definition 4.2.4), that for any a ∈R3 we can now write

 a i j k0 = + +cos cos cos .θ φ ψ  ■

Example 4.3.7
Show that if a ∈R3 is any vector, then

a a i i a j j a k k= ⋅( ) + ⋅( ) + ⋅( ) .

Solution
Let a i j k= + +α α αx y z . Then

a i i i i j i k i i
i

⋅( ) = ⋅ + ⋅ + ⋅
=

(
.

α α α
α

x y z

x

)

a j j i j j j k j j
j

⋅( ) = ⋅ + ⋅ + ⋅( )
=

α α α
α

x y z

y .

a k k i k j k k k k
k

⋅( ) = ⋅ + ⋅ + ⋅
=

( )
.

α α α
α

x y z

z
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So, indeed,

 a a i i a j j a k k= ⋅( ) + ⋅( ) + ⋅( )  ■

Now the following proposition, mentioned before in a different context, 
sounds rather obvious.

Proposition 4.3.4
Any vector from R3 is uniquely determined by its modulus and direction.

Definition 4.3.3
Let a ≠ 0 be any vector from R3. Then for any other vector x ∈R3 we define 
the (scalar) projection of x in the direction of a (Figure 4.8), as the scalar

x xa = ⋅ = ( )cos , ,θ θ  a x

Example 4.3.8
Find the projection of a i j k= − −3 2  on b i j k= + −2 3 .

Solution
Since

a b a b⋅ = ( )ab cos , ,

a
b

cos , .a b
a b( ) =

⋅

Therefore,

 acos , .a b( ) =
⋅ + −( )⋅ + −( )⋅ −( )

+ + −( )
=

3 1 1 2 2 3

1 2 3

7
142 2 2

 
■

FIGURE 4.8
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Example 4.3.9
A typical example of a scalar product from physics: the work W  done by a 
force F  acting on an object in moving it through a distance d = AB

- →--
 is given by

W Fd= ⋅ =F d cosθ

where θ is the angle between F  and d, and F cosθ is the projection of force F  in the 
direction of d (Figure 4.9). ■

Exercise 4.3.9
Show that

x y x y
a a a+( ) = + .

Exercise 4.3.10
Show that, given two vectors a b, ∈R3,

a b⋅ = =a b abb a .

Example 4.3.10
Using the concepts of vector projections, let’s show that

a b c a b a c⋅ +( ) = ⋅ + ⋅ .

Solution
Consider the projections b ba� = ( )cos ,b a  and c ca� = ( )cos ,c a  of the vectors b 
and c along a (Figure 4.10). Then b ca a+  is the projection of b c+  along a. So,

 a b c a b a ca a a a+( ) = ⋅ + ⋅
= ⋅ + ⋅ .a b a c

 
■

Exercise 4.3.11
Let a i j k b i k= + + = − +2 3 , � , and c i j k= − +2 5 . Find b a c a−( )⋅ −( ).

FIGURE 4.9
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Example 4.3.11
As another example of the application of the scalar product of vectors, 
let’s derive the equation of a circle with center C x y0 0,( ) and radius R 
(Figure 4.11).

If P x y,( ) is any point on the circle, then CP R
- →--

= , and therefore CP CP R
- →-- - →--

⋅ = 2.  
From Figure 4.11 we see that

CP OP OC P C

- →-- - →-- - →--
= − = −r r .

So we have

r r r rP C P C R−( )⋅ −( ) = 2 ,

FIGURE 4.11

| | |   

| |
FIGURE 4.10
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where r i jP x y= +  and r i jC x y= +0 0 . Therefore

 x y x y x y x y x x y yi j i j i j i j i+( ) − +( )  ⋅ +( ) − +( )  = −( ) + −( )0 0 0 0 0 0 jj 
= −( ) + −( ) =

2

0
2

0
2 2x x y y R .

 
■

Similarly, one can do

Exercise 4.3.12
Derive the equation of a sphere with center C x y z0 0 0, ,( ) and radius R 
(Figure 4.12).

Exercise 4.3.13
Find the equation of the sphere with center at C 3 2 9, ,−( ) and radius R = 5.

Example 4.3.12
Show that the angle inscribed in a semicircle (Figure 4.13) is a right angle.

Solution
Consider a semicircle and the angle θ  inscribed at the point C . From the 
figure, we see that:

a b a= = − ,

and

AC
- →--

= +b a,

FIGURE 4.12
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BC
- →--

= −b a

Then

AC BC

b a

- →-- - →--
⋅ = +( )⋅ −( )

= ⋅ − ⋅
= −
=

b a b a
b b a a

2 2

0.

Thus AC
- →--

 is perpendicular to BC
- →--

, i.e., the angle θ between them is a  
right angle. ■

Example 4.3.13
Let’s prove the well- known trigonometric identity

cos cos sin sin sin .θ φ θ φ θ φ−( ) = +

Consider vectors a and b in a Cartesian coordinate system such that a b= = 1 
(Figure 4.14).

Then

a i j= +cos sin ,θ θ

and

b i j.= +cos sinφ φ

FIGURE 4.13
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So

a b i j i j
a b

⋅ = +( )⋅ +( )
= ( )
= −( )
= ⋅ ⋅

cos sin cos sin
cos ,
cos

θ θ φ φ

θ φ
ab
ab
1 1 ccos
cos cos sin sin .

θ φ
θ φ θ φ

−( )
= +

Thus,

 cos θ φ θ φ θ φ−( ) = +cos sin sin sin . ■

Example 4.3.14
For the next proposition we will need the cosine law.

Consider a triangle∆ABC (Figure 4.15):
From the figure we see that b c a+ = , or c a b= − . Therefore,

c c c a b a b a a b b a b2 2= ⋅ = −( )⋅ −( ) = ⋅ + ⋅ − ⋅ .

Thus,

c a b ab2 2 2 2= + − cos ,θ

which is known as the cosine law. ■

Proposition 4.3.5
For any non- collinear a b, ∈R3,

(i) a b a b a b+( ) = + + ⋅ = + +2 2 2 2 22 2a b ab cosθ 
(ii) a b a b a b−( ) = + − ⋅ = + −2 2 2 2 22 2a b ab cosθ 

FIGURE 4.14
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Proof
Let a b c+ =  where a and b are non- collinear (Figure 4.16).

Then

c a b2 2= +( ) .

Recalling the cosine theorem, we have

c

a b a b

2 2 2 2

2 2

2 2

2
2
2

= = + + −( )
= + −
= + + ⋅

c a b ab
a b ab

cos
cos

.

π θ
θ

The proof for (ii) is analogous. ■

Proposition 4.3.6 (Cauchy– Schwarz Inequality)
For any a b, ∈R3

a b a b⋅ ≤ ⋅ .

Proof
If a = 0 or b = 0, both sides of the inequality are immediately satisfied. So, let’s 
assume that a ≠ 0 and b ≠ 0. Then

FIGURE 4.16

FIGURE 4.15
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a b a b⋅ = = ( )ab cos , , .θ θ 

Since |cos | ,θ ≤ 1

 �a b a b⋅ = ≤ ⋅ = ⋅| cos |ab a bθ  ■

Exercise 4.3.14
Show that the Cauchy– Schwarz proposition can equivalently be proved as 
follows:

Let α α α β β β1 2 3 1 2 3, , , , , ∈R be any collection of real numbers considered 
as the coordinates of two vectors, a and b, respectively. Then the Cauchy– 
Schwarz proposition holds, i.e.,

α β α β α β α α α β β β1 1 2 2 3 3
2

1
2

2
2

3
2

1
2

2
2

3
2+ +( ) ≤ + +( ) + +( ) = ⋅a b .

Proposition 4.3.7 (Triangle Inequality)
For any a b, ∈R3

a b a b+ ≤ +

Proof
Since both sides of the inequality are non- negative, it suffices to prove the 
equivalent inequality

a b a b+( ) ≤ +( ) ( )2 2
*

On the left- hand side of *( ) we have

a b a b a a a b b b+( ) +( ) = ⋅ + ⋅ + ⋅2 ,

while the right- hand side is

a a b b( ) + + ( ) = + +2 2 2 22 2a ab b .

Recalling Proposition 4.3.6 we conclude that a b a b+ ≤ + , as claimed. ■

Example 4.3.15
Prove that if the diagonals of a parallelogram are perpendicular, then the par-
allelogram is a rhombus.

 

 

 

 

 

 

 

 

 



Vectors in R3 Space 65

65

Proof
Let ABCD be a parallelogram such that a and b represent sides AB and BC, 
respectively, i.e. a = AB

- →--
 and b = BC

- →--
 (Figure 4.17).

Evidently, vectors d a b1 = +  and d a b2 = −  represent the diagonals. If the 
diagonals are perpendicular their scalar product has to be zero, i.e.

d d a b a b a a b a a b b b1 2
2 2 0

⋅ = +( )⋅ −( ) = ⋅ + ⋅ − ⋅ − ⋅
= − =a b .

Thus a b= , implying that the parallelogram is a rhombus. ■

Example 4.3.16
Show that the sum of the squares of the diagonals of any parallelogram 
ABCD  is equal to the sum of the squares of the sides.

Solution
Consider a parallelogram ABCD as in Figure 4.18:

Let AB
- →--

= a and BC
- →--

= b. Then DA
- →--

= −b, d a b1 = = +AC
- →--

 and d a b2 = = −DB
- →--

.  
So we have

d a b a b a b1
2 2 2 2= +( )⋅ +( ) = + + ⋅a b

and

d a b a b a b2
2 2 2 2= −( )⋅ −( ) = + − ⋅a b .

Hence,

 d d1
2

2
2 2 22 2+ = +a b . ■

As mentioned before, because of their particular nature, vectors can be multi-
plied in yet another way. We address this next.

FIGURE 4.17
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4.4  Cross (Vector) Product of Vectors

Definition 4.4.1 (Cross product of vectors)
Let a b, ∈R3 be any two vectors. Then there exists a unique function

v : ,R R R3 3 3× →

defined by

v a b a b c, ,( ) = × =

called the cross product. The cross product has the following properties:

(i) a b×  is the vector c perpendicular to both a and b, i.e. c a⊥ , c b⊥  
(Figure 4.19);

(ii) Vectors a b,  and c form a so- called right- handed system; and
(iii) The magnitude of c is equal to ab sinθ, where θ  is the angle between 

vectors a and b, i.e.

FIGURE 4.19

FIGURE 4.18
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c a b= × = ≤ ≤� ab sin , .θ θ π0

Proposition 4.4.1
For every a b, ∈R3 the cross product is anticommutative (Figure 4.20), i.e.

a b b a× = − ×( )

Notice that the magnitude of c, i.e., ab sinθ, is equal to the area A of the 
parallelogram formed by vectors a and b. Obviously, if a and b are collinear, 
then c = 0.

Example 4.4.1
As a simple example let’s justify (iii) from Definition 4.4.1.

The area A of any parallelogram (Figure 4.21) is base height a h× = ⋅ , so 
we have

 A = × = ⋅ = ⋅ = × =base height a h a b sin .θ a b c  ■

Exercise 4.4.1
Show that (i) from Definition 4.4.1 above is indeed true, i.e., that for any two 
vectors a b, ∈R3, a b×  is perpendicular to a and b.

Exercise 4.4.2
Following the definition of cross vector product show that:

i i. . ,1 2( ) ( )i j k, j i k× = × = −

FIGURE 4.20
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ii ii. , . ,1 2( ) ( )� j k i k j i× = × = −

iii iii. .1 2( ) ( )�k i j, i k j,× = × = −

iv( ) i i j j k k 0.× = × = × =

The proofs of the next two propositions follow immediately from the defin-
ition of the cross product.

Proposition 4.4.2
For any vector a,

a a 0.× =

Proof
Left to the reader. ■

Proposition 4.4.3
Two non- zero vectors a b, ∈R3 are collinear iff a b 0.× =

Proof
Left to the reader.

Exercise 4.4.3
Show that a b 0× =  iff there are scalars α and β, not both equal to zero, such 
that α βa b= .

Exercise 4.4.4
Let a = ( )1 2 3, ,  and b = ( )2 3 5, , . Find a b× .

FIGURE 4.21
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Exercise 4.4.5
Let a b c, , ∈R3 be any three vectors. Show that a b×  can equal a c×  without b 
being equal to c.

Exercise 4.4.6
Let a b c, , ∈R3with a 0≠ . Show that if a b a c⋅ = ⋅  and a b a c× = × , then b c= .

Example 4.4.2
Let A B, , and C  be the vertices of a triangle △ABC, so that AB

- →--
= a and AC

- →--
= b 

(Figure 4.22).
Let’s derive the well- known formula for the area A of the triangle △ABC.
Observe that the area A of the triangle is equal to one half of the area of the 

parallelogram ABCD. Since the area of the parallelogram is AB AC
- →-- - →--

× = ×a b  
it follows that

 A = × = sin .
1
2

1
2

a b ab φ  ■

Exercise 4.4.7
Find the area of the triangle ∆ABC if AB

- →--
= −2 3i k and AC

- →--
= + +4 4i j k.

Exercise 4.4.8
Consider a tetrahedron with vertices A B C1 0 2 3 1 4 1 5 2, , , , , , , ,( ) −( ) ( ) and 
D 4 4 4, ,( ), (Figure 4.23).
Show that:

(i) the height h  of the tetrahedron is 
2

2
.

(ii) the volume V of the tetrahedron is 
5
3

. Hint : V = ( ) ⋅ ( )





1
3

areaof thebase height

FIGURE 4.22
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Proposition 4.4.4
Let a i j k= + +α α αx y z  and b i j k= + +β β βx y z . Then

a b i j k× = −( ) − −( ) + −( )α β α β α β α β α β α βy z z y x z z x x y y x .

Proof

 

a b i j k i j k

i i i j i

× = + +( ) × + +( )
= ×( ) + ×( ) +

α α α β β β
α β α β α β

x y z x y z

x x x y x z ××( )
+ ×( ) + ×( ) + ×( )
+ ×

k
j i j j j k
k

α β α β α β
α β

y x y x y z

z x ii k j k k
k j k
( ) + ×( ) + ×( )

= + −( ) + −( ) +
α β α β

α β α β α β
z xy z z

x y x z y x ++ + + + −( )
= − − −( )

α β α β α β
α β α β α β α β

y z z x z y

y z z y x z z x

i j

i j

i
( ) ++ −( )α β α βx y y x k.

 

■

Example 4.4.3
Find a b×  if a i j k= − +2  and b i k= − 2 .

Solution

a b i j k i k
i i k j i k k i k

× = − +( ) × −( )
= × −( ) − × −( ) + × −( )
=

2 2
2 2 2 2
2 ii i i k j i j k k i k k

j k i j
×( ) − ×( ) − ×( ) + ×( ) + ×( ) − ×( )

= + + +
4 2 2

4 2
= + +2 5i kj

Since the components of the cross product are, according to Proposition 4.4.4:

a b×( ) = −( )x y z z yα β α β ,

FIGURE 4.23
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a b×( ) = −( )y z x x zα β α β ,

a b×( ) = −( )z x y y xα β α β ,

a reader familiar with determinants3 will immediately recognize that there is 
a simple way of calculating the cross product of two vectors a and b, which is 
by evaluating the determinant:

a b

i j k

i j

× =

= −( ) − −( ) +

α α α
β β β

α β α β α β α β α β

x y z

x y z

y z z y z x x z x yy y x−( )α β k

Example 4.4.4
Find a b×  by the “determinant method” if a i j k= + −2 4 3  and b i j k= + +3 7 .

Solution

 

� � �a b

i j k

i j k

× = −

= ⋅ − −( )⋅( ) − ⋅ − −( )⋅( ) + ⋅ − ⋅( )

2 4 3
1 3 7

4 7 3 3 2 7 3 1 2 3 4 1
.= − +37 17 2i j k  ■

Exercise 4.4.9
Let a i j k= + +3 2  and b i j k= − +3 4 . Show that

a b

i j k

i j k× =
−

= … = − −3 2 1
1 3 4

11 11 11 ,

and

b a

i j k

i j k b a× = − = … = − + + = − ×( )1 3 4
3 2 1

11 11 11 .

Example 4.4.5
Here is the vector product of the unit vectors in i.1( ) and ii.2( ) from Exercise 4.4.2 
evaluated by the “determinant method”:
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Since i j= ( ) = ( )1 0 0 0 1 0, , , , ,  and k = ( )0 0 1, , , we have

 i j

i j k

k k j

i j k

j× = = × = = −1 0 0
0 1 0

0 0 1
0 1 0

; . 

■

Exercise 4.4.10
Verify that the results from the previous three examples can be obtained by 
calculating the cross product using the method described in Proposition 4.4.4.

Example 4.4.6
Let’s look again at statement (i) from Definition 4.4.1.

Take two non- collinear vectors a b,  in the XY- plane, and let vector a be 
directed along the X- axis (Figure 4.24).

In other words,

a i i= =a ax ,

and let

b i j i j= + = +b b b bx y cos sin .θ θ

Then

c a b

i j k i j k

= × = =

=

a

b b

a

b b
ab

x

x y

0 0
0

0 0
0cos sin

sin
θ θ

θ� � � � � � � � � � � � � � � .k

θ

FIGURE 4.24

 

 

 

 

 

 

 



Vectors in R3 Space 73

73

So, as expected, c is directed along the Z- axis, and therefore it is perpen-
dicular to both a and b. ■

Proposition 4.4.5
The cross product has the following properties:

(i) λ λ λ λa b a b a b a b( ) × = × ( ) = ×( ) ∀ ∈ ∈, , ,� R R3;
(ii) , , ,a b c a b a c a b c× +( ) = ×( ) + ×( ) ∀ ∈R3.

Proof
(i) If λ = 0 the claim is obvious.

If λ > 0, then a and λa have the same orientation, i.e.  λ φa b a b, ,( ) = ( ) = .  
So

λ λ λ
λ λ λ

a b a b a b
a b a b

( ) × = ( )
= ⋅ ⋅ ( ) =

sin ,
sin , sin ,a b ab (( )

= × = ×( )λ λa b a b .

If λ < 0, then  λ πa b a b, ,( ) = − ( ).
So

λ λ λ
λ π

a b a b a b
a b a b

( ) × = ( )
= − ( )

sin ,
sin[ , ]

= − ⋅ ⋅ ( )
= − ×
= × = ×( )

λ
λ

λ λ

a b sin ,

.

a b
a b
a b a b

(ii) In our proof we will assume that a b c≠ ≠ ≠ 0 ; for if any of the vectors 
a b,  and c was equal to 0 the claim would be trivial. So, let them be as in 
Figure 4.25.

Now, notice that

| ’| cos sin .OB b
- →----

= −





=b
π φ φ
2

In other words, | ’|OB
- →----

 is a projection of vector b to the plane Π. Let’s rotate 
OB’
- →---

 counterclockwise by 90 to get OC
- →--

, which aligns with vector a b× ,  
i.e. | ’|OC OB
- →--- - →----

= . Observe, also, that OC OB
- →-- - →---

⊥ ’. Multiplying a by b sin φ 
yields c a b= × .

Next, let b c d+ = , so we are now dealing with vectors b c,  and d. Finally, we 
consider the products a b× , a c× , and a d× , and we get
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 a b a c a d
a b c

× + × = ×
= × +( ).

 
■

Exercise 4.4.11
Prove that

a b a b×( ) = ×( )λ λ

(cf. Proposition 4.4.5).

Exercise 4.4.12
Prove that

α β α βa b c a c b c+( ) × = ×( ) + ×( )

(cf. Proposition 4.4.5).

Exercise 4.4.13
Show that for any two vectors a b, ∈R3, and α ∈R , if b a c= +α , then  
a b a c× = × .

Example 4.4.7
Prove that for any a b, ∈R3

a b a b a b−( ) × +( ) = ×( )2 .

FIGURE 4.25
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Solution

 

a b a b a b a a b b
a a b a a b b b
a b b

a b

−( ) × +( ) = −( ) × + −( ) ×
= × − × + × − ×
= × + ×
= ×( )

a
2 ..  ■

Exercise 4.4.14
Let a i j k b i j k= − − = + −2 3 4 2� �and . Show that

a b a b i j k+( ) × −( ) = − − −20 6 22 .

Example 4.4.8
Consider a parallelogram Π1 whose sides are the vectors a  and b  
(Figure 4.26). Show that the area A Π2( ) of the parallelogram Π2 whose sides 
are the diagonals of Π1 is twice the area A Π1( ), i.e. A Π2 2( ) = A Π1( ).

Solution
Note that the area of parallelogram Π1 is A Π1( ) = ×a b , while the area 
A Π2( ) = +( ) × −( )a b a b . Thus,

 

a b a b a b a a b b
a a b a a b b b
b a

+( ) × −( ) = +( ) × − +( ) ×
= ×( ) + ×( ) − ×( ) − ×( )
= ×( ) + bb a

b a
×( )

= ×( )2 .

 

■

Example 4.4.9
Let a and b be coplanar with  a b,( ) = θ. Furthermore, let b’ be the projection  
vector of the vector b on the line perpendicular to a, i.e. ′ ⊥b a  (Figure 4.27).  
Show that a b a b× = × ’.

FIGURE 4.26
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Solution
Since

a b a b× = ⋅ ( ) = ⋅| sin , sin |a b a b θ

and

b b bsin |cos ,θ π θ= −





= ′
2

it follows that

a b’ a b× = ⋅ ( ) = ⋅′ ′ ′| sin , |.a b a b

Thus

 a b a b× = × ’. ■

Example 4.4.10
Let a and b be two vectors such that θ = ( ) a b, . Prove the Lagrange identity:

a b a b a b× + ⋅ = ⋅2 2 2 2| | .

Solution

 
a b a b× + ⋅ = +

= +( )
=

2 2 2 2 2 2 2 2

2 2 2 2

2 2

a b a b
a b

sin cos
sin cos

θ θ
θ θ

.a b  ■

FIGURE 4.27
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Example 4.4.11
Let’s derive the sine law. Consider triangle △ABC in Figure 4.28.

Notice that a b c= − , so we can write

0 = × = −( ) × = × − ×a a b c a b a c a.

Thus,

b a c a× = ×

and

b a c a× = × .

But,

b a c a× = = × =ba casin sin ,ψ φ

and, since a ≠ 0,

 
sin sin

.
ψ φ

c b
=  (4.4)

Similarly,

0 = × = × +( ) = × + ×b b b c a b c b a

Thus,

c b b a× = ×

and

c b b a× = × .

FIGURE 4.28
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So,

c b a× = = × =b cb basin sinθ ψ

and

 
sin sin

.
θ ψ

a c
=  (4.5)

From 1( ) and 2( ) we get the sine law:

 
sin sin sinθ φ ψ

a b c
= =  

■

Example 4.4.12
Let’s prove another well- known trigonometric identity (cf. Example 4.3.13),  
namely

sin sin cos cos sinθ φ θ φ θ φ−( ) = −

Solution
Let a  and b be two vectors in the first quadrant making angles θ and φ with 
the X  axis and, without loss of generality, let a b= = 1 (Figure 4.29):

Then

a i j= +cos sinθ θ

and

b i j= +cos sin .φ φ

FIGURE 4.29
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So, the cross product is

a b i j i j
i j k

× = +( ) × +( )

=

=

cos sin cos sin

cos
cos

sin
sin

(sin

φ φ θ θ

φ
θ

φ
θ

0
0

θθ φ θ φcos cos sin ) .− k

On the other hand,

a b× = ⋅ −( )
= −( )

1 1sin
sin

θ φ
θ φ

Hence,

 sin sin cos cos sin .θ φ θ φ θ φ−( ) = −  ■

Example 4.4.13
Consider a rigid body rotating with a constant angular velocity w about the  
Z- axis (Figure 4.30), and find its linear velocity v.

FIGURE 4.30
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Solution
Let r be the position vector of the point P x y z, ,( ) on the path of circular rota-
tion. From the figure we see that the vector v lies in the plane of rotation, that 
is, it is perpendicular to the plane of w and r (i.e. it is perpendicular to both 
w and r). Thus, since R r= sinθ is the radius of rotation, the magnitude of v is

v R r= = ⋅ = ×ω ω θsin .w r

So, v w r= ×� . ■

4.5  Mixed Product of Vectors

Definition 4.5.1 (Mixed product of vectors)
We say that the map

m : ,R R R R3 3 3× × →

defined as

m a b c a b c, , ,( ) = ×( )⋅

is a mixed product (triple product or cross- dot product) of vectors. The abso-
lute value of this product is equal to the volume of the parallelepiped with 
sides a b,  and c (Figure 4.31).

To see this, consider the following: the base of the parallelepiped is  
B = ×a b , and its height h c= cosφ. Thus

V c= × ⋅ = ×( )⋅a b a b ccos .φ

FIGURE 4.31
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Example 4.5.1
Find the volume of the parallelepiped formed by

a i k b i j k c j k= + = + + = − +3 2 2 4, .and

Solution

a b c⋅ ×( ) =
−

= +( ) + −( ) =
3 0 2
1
0

2 1
1 4

3 8 1 2 1 25.

So the volume is 25 cubic units. ■

Exercise 4.5.1
Prove that the volume of the parallelepiped formed by a i j= −2 3 , b i j k= + −  
and c i k= −3  is 4 cubic units.

Exercise 4.5.2
Prove that a b c c a b×( ) ⋅ = ⋅ ×( ).

Proposition 4.5.1
For any a i j k b i j k= + + = + +α α α β β βx y z x y z� �,  and c i j k= + +γ γ γx y z ,

a b c b c a c a b×( )⋅ = ×( )⋅ = ×( )⋅ .

Proof
Let a b d× = . Then

 a b c d c×( )⋅ = ⋅ = + +d d dx y y z zx γ γ γ . (4.6)

But

 a b i j k× = −( ) + −( ) + −( )α β α β α β α β α β α βy z z y z x x z x y y x . (4.7)

So, we have

 a b c×( )⋅ = −( ) + −( ) + −( )γ α β α β γ α β α β γ α β α βx y z z y y z x x z z x y y x . (4.8)

In Equation 4 3.( ) we recognize the determinant

 D
x y z

x

x

y

y

z

z

=
α α α
β
γ

β
γ

β
γ

 

■
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evaluated on the third row. From elementary theorems on determinants (see 
Appendix C), it can be shown that interchanging two rows produces a change 
of sign of the determinant, so that an even number of such interchanges leaves 
the value of the determinant unchanged. Hence the cyclic permutation of the 
vectors does not change the value of the dot- cross product, i.e.

a b c b c a c a b⋅ ×( ) = ⋅ ×( ) = ⋅ ×( ) , (*)

which we often write as

a,b,c( ) =
α α α
β
γ

β
γ

β
γ

x y z

x

x

y

y

z

z

.

Example 4.5.2
Show that for any three vectors a b c, , ∈R3

a a⋅ ×( ) = ×( )⋅b c b c.

Solution
Since the scalar product of two vectors is commutative it follows that

c a b a b c⋅ ×( ) = ×( )⋅ .

On the other hand, from Proposition 4.5.1 it follows that

 a b c a b c⋅ ×( ) = ×( )⋅ .  ■

Finally, from everything that has been said so far, it is fairly obvious that:

a,b,c b,a,c c,b,a a,c,b( ) = −( ) = −( ) = −( ).

Corollary 4.5.1
(i) α β γ αβγa b c a b c, , , , ;( ) = ( )
(ii) a a b c a b c a b c1 2 1 2+( ) = ( ) + ( ), , , , , , ;

(iii) a b b c a b c a b c, , , , , , ;1 2 1 2+( ) = ( ) + ( )  and
(iv) a b c c a b c a b c, , , , , , .1 2 1 2+( ) = ( ) + ( )

Exercise 4.5.3
Let a = −( )4 2 1, , , b = − −( )1 1 3, ,  and c = ( )2 1 2, , . Evaluate a b c⋅ ×( ).

 

 

 

 

 

 

 

 

 



Vectors in R3 Space 83

83

Exercise 4.5.4
Prove that for any a b, ∈R3, a a b⋅ ×( ) = 0.

Exercise 4.5.5
Show that:

(i) i j k⋅ ×( ) = 1;
(ii) j j i⋅ ×( ) = 0.

Example 4.5.3
Let x be any vector, and let

y a b c a b a c= × +( ) − × − × .

Show that x y⋅ = 0.

Solution

 

x y x a b c a b c
x a b c x a b x a c
x

⋅ = ⋅ × +( ) − × − × 
= ⋅ × +( )  − ⋅ ×( ) − ⋅ ×( )
= ×

a

aa b x a b x a c
x a b x a c x a b x a c

( )⋅ +( ) − ×( )⋅ − ×( )⋅
= ×( )⋅ + ×( )⋅ − ×( )⋅ − ×( )⋅

c

== 0.  ■

Proposition 4.5.2
Three vectors a b c, ,  are coplanar iff a b c⋅ ×( ) = 0.

Proof
If a b c, ,  are coplanar, the volume of parallelepiped formed by them is zero, 
and so a b c⋅ ×( ) = 0. On the other hand, if a b c⋅ ×( ) = 0 then the volume of the 
parallelepiped formed by a b,  and c is zero, so the vectors must lie in a plane.

Corollary 4.5.2
Vectors a i j k b i j k= + + = + +α α α β β βx y z x y z� ,  and c i j k= + +γ γ γx y z  are 

coplanar iff

α α α
β
γ

β
γ

β
γ

x y z

x

x

y

y

z

z

= 0.

Equivalently, we say that the vectors a b c, , ∈R3  are linearly dependent iff

a b c⋅ ×( ) = 0.
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Example 4.5.4
Let’s determine a condition under which four distinct points are coplanar. 
Consider four distinct points A B C, ,  and D lying in the plane Π, with 
corresponding position vectors a b c, ,  and d (Figure 4.32).

Since A B C, ,  and D are coplanar, AC AD
- →-- - →--

×  is a vector perpendicular to the 
plane Π, and therefore perpendicular to the vector AB

- →--
. Consequently

AB AC AD
- →-- - →-- - →--

⋅ ×( ) = 0.

But since

AB
- →--

= −b a,

AC
- →--

= −c a,

and

AD
- →--

= −d a,

the necessary condition for the coplanarity of four points is

 b a c a d a−( )⋅ −( ) × −( )  = 0. ■

Z

FIGURE 4.32
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Example 4.5.5
Determine whether the points A B C−( ) ( ) −( )1 2 2 3 3 4 2 2 10, , , , , , , ,  and D 0 2 2, ,( ) 
are coplanar.

Solution
Let a b c= = ( ) = = ( ) = = ( )AB AC AD

- →-- - →-- - →--
4 1 2 3 4 8 1 0 0, , , , , , , ,� , and we have

a b c⋅ ×( ) = = =
4 1 2
3 4 8
1 0 0

1 2
4 8

0.

Thus the vectors a b,  and c are coplanar and therefore points A B C, ,  and D lie 
in the same plane. ■

Example 4.5.6
Let

A
b c

a b c
B

c a
a b c

C
a b

a b c
=

×
⋅ ×

=
×

⋅ ×
=

×
⋅ ×

, , and

be three vectors in R3. Show that

(i) A a B b C c⋅ = ⋅ = ⋅ = 1;
(ii) A b A c B a B c C a C b⋅ = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ = 0.

Solution

i( ) ⋅ = ⋅ = ⋅
×

⋅ ×
=

⋅ ×
⋅ ×

=

⋅ = ⋅ = ⋅
×

⋅ ×
=

⋅ ×

A a a A a
b c

a b c
a b c
a b c

B b b B b
c a

a b c
b c

1;

aa
a b c

a b c
a b c

C c c C c
a b

a b c
c a b
a b c

a b c
⋅ ×

=
⋅ ×
⋅ ×

=

⋅ = ⋅ = ⋅
×

⋅ ×
=

⋅ ×
⋅ ×

=
⋅ ×

1;

aa b c

a b c a b c
a b c
a b c

⋅ ×
=

⋅ = ⋅ = ⋅
×

⋅ ×
=

⋅ ×
⋅ ×

=
⋅ ×
⋅ ×

=

1

1

;

;B b b B b c a b c a

C c c C c
a b

a b c
c a b
a b c

a b c
a b c

⋅ = ⋅ = ⋅
×

⋅ ×
=

⋅ ×
⋅ ×

=
⋅ ×
⋅ ×

= 1;

ii( ) ⋅ = ⋅ = ⋅
×

⋅ ×
=

⋅ ×
⋅ ×

=
× ⋅
⋅ ×

=A b b A b
b c

a b c
b b c
a b c

b b c
a b c

0.

Similarly, one can prove the rest of (ii). ■
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4.6  Triple Cross Product of Vectors

Definition 4.6.1 (Triple cross product)
Let a b c, , ∈R3 be any three vectors. Then the function

v : ,R R R R3 3 3 3× × →

defined by

v a,b,c a b c d( ) = × ×( ) =

is said to be the triple cross product.

Proposition 4.6.1
Let a b c, , ∈R3 be any three vectors. Then,

(i) ;a b c b a c a b c×( ) × = ⋅( ) − ⋅( )
(ii) a b c b a c c a b× ×( ) = ⋅( ) − ⋅( ).

Proof
Before we do an analytic proof, let’s try to visualize one of the identities, say 
(i) (Figure 4.33).

Let

d a b c= ×( ) × .

Then by definition of the vector product

d a b d c⊥ × ⊥and .

FIGURE 4.33
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Now, d being perpendicular to a b×  implies that d lies in the same plane as a 
and b. Therefore, there exists α β, ∈R such that

d a b= +α β .

On the other hand, since d c⊥ ,

d c a b c a c b c⊥ = +( )⋅ = ⋅( ) + ⋅( ) =α β α β 0.

It follows that

α λ= − ⋅( )b c ,

β λ= ⋅( )a c .

The easiest way to prove, say, (ii) analytically is to use the appropriate deter-
minant. So, with

a i j k b i j k c i j k= + + = + + = + +α α α β β β γ γ γx y z x y z x y z, and ,

we have

a b c i j k

i j k

i j k

× ×( ) = + + ×

= + +( ) × −

( )α α α β
γ

β β
γ γ

α α α β γ

x y z x

x

y z

y z

x y z y z ββ γ β γ β γ β γ β γ

α
β γ β γ

α

z y x z z x x y y x

x

y z z y

y

( ) − −( ) + −( )





=
−

i j

i j k

k

ββ γ β γ
α

β γ β γ

α β γ β γ α β γ β γ
z x x z

z

x y y x

y x y y x z z x x z

− −

= −( ) − −( )



 −i

−− −( ) − −( )



 +

+ −( ) −

α β γ β γ α β γ β γ

α β γ β γ α

x x y y x z y z z y

z x x z y

j

x ββ γ β γ

α β γ α β γ α β γ α β γ

α β γ

y z z y

y x y y y x z z x z x z

x x

−( )





= − − +( ) −

−

k

i

yy x y x z y z z z y

z x x z y y z y z y

− − +( ) +

+ − − +( )
α β γ α β γ α β γ

α β γ α β γ α β γ α β γ

j

x x kk.  
 (4.9)

 

 

 

 

 

 

 



Classical Vector Algebra88

88

The right- hand side is

b a c c a b

i j k i j k i j k

⋅( ) − ⋅( ) =
= + +( ) + +( )⋅ + +( )

β β β α α α γ γ γx y z x y z x y z

 −

− + +( ) + +( )⋅ + +( )





= +

γ γ γ α α α β β β

β β
x y z x y z x y z

x y

i j k i j k i j k

i jj k i j k+( )⋅ + +( ) − + +( )⋅ + +( )
=

β α γ α γ α γ γ γ γ α β α β α β

α
z x x y y z z x y z x x y y z z

yy x y z x z y y x z z x

x y x z y z x x y z

β γ α β γ α β γ α β γ

α β γ α β γ α β γ α β

+ − −( ) +

+ + − −

i

zz y

z z x z y x x z y y z

γ

α β γ α β γ α β γ α β γ
( ) +

+ + − −( )
j

ky .

 
 

(4.10)

Comparing 4 9.( ) and 4 10.( ) we conclude that identity (ii) does indeed hold. 
Similarly, we can prove (i). ■

Corollary 4.6.1 (Jacobi identity)
For any vectors a b c, , ∈R3

a b c b c a c a b×( ) × + +( ) + ×( ) × = 0.

Proof
From the previous proposition we have

 a b c b a c a b c×( ) × = ⋅( ) − ⋅( )  (4.11)

 b c a c b a b c a×( ) × = ⋅( ) − ⋅( )  (4.12)

 c a b a c b c a b×( ) × = ⋅( ) − ⋅( )  (4.13)

Adding 1 2( ) ( ),  and 3( ), we get the desired result. ■

Exercise 4.6.1
Show that

(i) i j k× ×( ) = 0;
(ii) i j i j× ×( ) = − .

Exercise 4.6.2
Let a = −( )4 2 1, , , b = − −( )1 1 3, ,  and c = ( )2 1 2, , . Evaluate

(i) a b c× ×( ) ; 
(ii) a b c×( ) × . 
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Exercise 4.6.3
Let a i j k= − −2 2 , b i k= +3 2  and c i j k= − + +3 .

Show that

(i) a b c i j k× ×( ) = − − −21 2 20 ; 
(ii) a b c i j k×( ) × = − − −13 7 32 .

Exercise 4.6.4
Show that

(i) there exist β γ, ∈R, such that

a b c b c× ×( ) = +β γ ;

(ii) there exist α β, ∈R, such that

a b c a b×( ) × = +α β .

Example 4.6.1
Let’s show that the cross product is not an associative operation, i.e., that

a b c a b c×( ) × ≠ × ×( ).

Solution
Without loss of generality, we will assume that a b, �  and c are coplanar and,  
furthermore, that a and c are not collinear. Then, evidently, a b c×( ) ×  and  
a b c× ×( ) are both coplanar with the plane Π (Figure 4.34(i), (ii)).

FIGURE 4.34(i)
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Notice, also, that

a b c c a b c a×( ) × ⊥ × ×( ) ⊥and .

Thus, since a and c are not collinear,

 a b c a b c×( ) × ≠ × ×( ) ■

4.7  The Quadruple Dot and Quadruple Cross Product

Definition 4.7.1 (Quadruple dot and quadruple cross product)
Let a b c d, , , ∈R3 be any four vectors. We call the expressions

a b c d a b c d×( )⋅ ×( ) ×( ) × ×( )and .

the quadruple dot (scalar) and quadruple cross (vector) products.

Example 4.7.1
Show that

a b c d a c b d a d b c
a c a d

b c b d
×( ) ⋅ ×( ) = ⋅( ) ⋅( ) − ⋅( ) ⋅( ) =

⋅ ⋅
⋅ ⋅

.

FIGURE 4.34(ii)
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Solution
Let a b v× = , then

 

a b c d v c d v c
a b c d b a c a b c d

×( ) ⋅ ×( ) = ⋅ ×( ) = ×( )⋅
= ×( ) ×( )⋅ = ⋅( ) − ⋅( )( )⋅
=

d

aa c b d a d b c
a c a d

b c b d

⋅( ) ⋅( ) − ⋅( ) ⋅( )
=

⋅ ⋅
⋅ ⋅

.

 

■

Exercise 4.7.1
Show that

a b b c c a a,b,c×( )⋅ ×( ) × ×( ) = ( )2 .

Solution

a b b c c a
a b c a c a

b b c b c a

a,b,c

a,

×( )⋅ ×( ) × ×( ) =
⋅ ×( ) ⋅ ×( )
⋅ ×( ) ⋅ ×( )

=
( ) 0

0 bb,c
a,b,c( ) = ( )2

Example 4.7.2
Show that

a b c d b a c d a b c d
c a b d d a b c

×( ) × ×( ) = ⋅ ×( ) − ⋅ ×( )
= ⋅ ×( ) − ⋅ ×( ).

Solution
Let a b v× = , then

a b c d v c d c v d d v c
c a b d d a b c
c a b d

×( ) ⋅ ×( ) = × ×( ) = ⋅( ) − ⋅( )
= × ⋅( ) − × ⋅( )
= ⋅ ×(( ) − ⋅ ×( )d a b c .

On the other hand, with c d w× = , we have

a b c d a b w b a w a b w
b a c d a b c d

×( ) × ×( ) = ×( ) × = ⋅( ) − ⋅( )
= ⋅ ×( ) − ⋅ ×( )
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Exercise 4.7.2
Prove that

a b c d
a c a d

b c b d
× × ×( )  =

× ×
⋅ ⋅

.

Exercise 4.7.3
Simplify

a b c a b c×( ) × ×( )  × ×( ).

Notes

1 In advanced linear algebra one distinguishes between vectors written as a row and 

those written as a column, i.e., between a = ( )α α αx y z, ,  and a =














a

a

a

x

y

z

.

2 Let’s stress again the importance of not confusing the coordinates of a point and 
the components of a vector, i.e. P(x,y,z) is a point whose coordinates are x,y, and z, 
whereas a = (x,y,z) = xi + yz + zk is a vector. Another useful, and possibly less con-
fusing, notation for a vector via its components is a = <x,y,z>.

3 A reader not familiar with determinants should consult Appendix C.
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5
Elements of Analytic Geometry

5.1  Some Preliminary Remarks

With the tools and techniques developed in the previous sections, we are now 
in a position to address some topics of analytic geometry. This can also be 
considered as a simple exercise in the application of a vector algebra. Hence, 
it might be instructive at this point to remind ourselves of the following: As 
before, we will be working in the Euclidean space R3 using as a reference 
frame the usual Cartesian coordinate system O; , , .i j k( ){ }  Recall that we call a 
Cartesian coordinate system left-  or right- handed depending on the orientation 
of the basis B = ( ){ }i j k, , . We will continue to use the right- handed system.

Also, we previously used the concept of a radius vector without defining 
it precisely and without emphasizing the equivalence of a space of radius 
vectors and a space of arbitrary vectors in 3- space. So, here it is more formally.

Consider the set

R3 O OPP P( ) = ={ }r r| .
- →--

and a bijection

r O: R R3 3→ ( )

such that for any a ∈R3

r OPPa r( ) = =
- →--

.

With the standard operations of the addition and multiplication of vectors, 
(R3 O( ) + ⋅; , ) is a vector space.
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The simplest orthonormal basis of this space is the familiar set

B = = = ={ }i j k( , , ), ( , , ), ( , , ) .1 0 0 0 1 0 0 0 1

Any position vector (Figure 5.1), is therefore uniquely expressed as

r i j k= + + ∈x y z x y z, , , R.

We say that x y z, , ∈R are the Cartesian coordinates of r in the basis BB.
As mentioned before, the advantage of such a definition of a radius vector 

is that the coordinates of any point P are at the same time the coordinates of 
the corresponding radius vector. We hope that the reader is already familiar 
with the statement:

If A x y z1 1 1, ,( ) and B x y z2 2 2, ,( ) are any two points in R3 O( ), then the vector 
AB
- →--

 is given by

AB x x y y z z
- →--

= −( ) + −( ) + −( )2 1 2 1 2 1i j k.

Example 5.1.1
Suppose an object (a particle) is moving from the initial point A x( 1,y z1 1, ) 
to the final point B x( 2,y z2 2, ), on a trajectory described by a function f r( ) 
(Figure 5.2).

The position vectors of the initial point A and the final point B are 
r i j k1 1 1 1= + +x y z  and r i j k2 2 2 2= + +x y z , respectively. The so- called displace-
ment vector ∆r  is equal to the difference r r2 1− , i.e.

FIGURE 5.1

 

 

 

 

 



Elements of Analytic Geometry 95

95

∆r r r i j k i j k= − = + +( ) − + +( )2 1 2 2 2 1 1 1x y z x y z

= −( ) + −( ) + −( )x x y y z z2 1 2 1 2 1i j k.

Then,

∆r = −( ) + −( ) + −( )x x y y z z2 1
2

2 1
2

2 1
2

represents the distance between points A and B. ■
Let’s recall one more thing.
Given a radius vector r i j k= + +x y z ,

r i i j k i⋅ ⋅= + +( )x y z

= ⋅ ⋅ ( ) =r x1 cos , .r i

The direction cosines are therefore

cos , cos ,r i( ) = =α x
r

cos r j, cos ,( ) = =β
y
r

cos r k, cos ,( ) = =γ z
r

and the corresponding unit vector is

FIGURE 5.2
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r
r

i j k0 = = + +
r

x
r

y
r

z
r

= + +cos cos cos .α β γi j k

It follows that

cos cos cos2 2 2
2 2 2

2 1r i r j r k, , , .( ) + ( ) + ( ) =
+ +

=
x y z

r

Finally, if r i j k1 1 1 1= + +x y z  and r i j k2 2 2 2= + +x y z  are any two (non- zero) 
radii vectors, then

cos ,r r
r r

1 2
1 2

1 2

1 2 1 2 1 2

1 2

( ) = =
+ +

⋅
⋅
⋅r r

x x y y z z
r r

=
+ +

+ + + +

x x y y z z

x y z x y z
1 2 1 2 1 2

1
2

1
2

1
2

2
2

2
2

2
2

.

We see immediately that r1and r2 are perpendicular to each other, (r1⊥r2), 
iff cos ,r r1 2( ) = 0, or, in other words, iff x x y y z z1 2 1 2 1 2 0+ + =  (cf. Corollary 
3.2.2).

Example 5.1.2
Suppose the coordinates of the points A and B from the previous example 
are: 3 2 4, ,−( ) and 5 3 2, ,−( ). Therefore, the corresponding radii vectors are 
r i j k1 3 2 4= − +  and r i j k2 5 3 2= − + . Find the direction cosines for the dis-
placement vector ∆r .

Solution

∆r r r i j k= − = −( ) + − +( ) + −( )2 1 5 3 3 2 2 4

= − −2 2i j k.

So

∆r = + −( ) + −( ) =2 1 2 32 2 2 .

Hence

cos , ,∆
∆

r i
r

( ) =
−

=
x x2 1 2

3
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cos , ,∆
∆

r j
r

( ) =
−

= −
y y2 1 1

3

 cos ∆
∆

r k
r

,( ) =
−

= −
z z2 1 2

3
.
 

■

5.2  Equations of a Line

We start with the familiar general equation of a line in the XY- plane:

 Ax By C+ + = 0. (5.1)

If our line passes through the point P x y0 0 0,( ), then the following has to hold

 Ax By C0 0 0+ + = . (5.2)

Subtracting 5 2.( ) from 5 1.( ), we obtain the equation of a line l passing through 
the point P0:

 A x x B y y C( ) .− + −( ) + =0 0 0  (5.3)

On a closer inspection of Equation (5.3), we realize that it can be obtained as 
a dot product of two vectors

 n i j= +A B  (5.4)

and

r r i j− = −( ) + −( )0 0 0x x y y .

Indeed,

n r r i j i j⋅ −( ) = +( )⋅ −( ) + −( )( )0 0 0A B x x y y

( ) .= − + −( ) + =A x x B y y C0 0 0

So the coefficients A and B are the coordinates of the vector n which is per-
pendicular to the line l (Figure 5.3(i)).

Any line in either 2-  or 3- dimensional (Euclidean) space, R2 or R3, is uniquely 
determined by two points, i.e., there is one and only one line passing through 
the given points P1  and P2.
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As an example, a line l that passes through the origin of a coordinate system 
and another point P other than O 0 0,( ) or O 0 0 0, ,( ) looks something like the 
line in Figure 5.3(ii) or Figure 5.3(iii).

Let’s now consider a line l in a 3- dimensional space R3, parallel to a given 
direction vector a i j k= + +α α αx y z , and passing through a point P x y z0 0 0 0, ,( ). 
Notice that a and a’  are isomorphic (Figure 5.4).

Set

OP x y z0 0 0 0 0

- →---
= = + +r i j k,

and let’s pick another point, P, on l such that

FIGURE 5.3 (i)

FIGURE 5.3 (ii)
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OP x y z
- →--

= = + +r i j k.

Then, by our construction, r r− 0 is parallel to a, thus

 r r a−( ) × =0 0. (5.5)

We have obtained the vector equation of a line.

FIGURE 5.4

FIGURE 5.3 (iii)
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Now, the fact that r r−( )0  is parallel to a can also be expressed by

 r r a− = ∈0 λ λ, R. (5.6)

To put it differently, for every point P l∈  there exists a unique λ ∈R, such that

 r r a= +0 λ . (5.6')

Writing (5.6) explicitly via its components, we get

x x y y z z x y z−( ) + −( ) + −( ) = + +( )0 0 0i j k i j kλ α α α .

Equating the coefficients of i j,  and k yields

 
x x

y y

z z

x

y

z

− =
− =
− =









,
,

0

0

0

λ
λ
λ

α
α
α

 (5.7)

or

 
x x

y y

z z

x

y

z

= +
= +
= +









,
,

0

0

0

λ
λ
λ

α
α
α

 (5.7')

The Equations 5 7 5 7. / . ’( ) are known as the parametric equations of a line. 
Eliminating λ from 5 7 5 7. / . ’( ) we obtain

 x x y y z z

x y z

−
=

−
=

−0 0 0

α α α
.
 

(5.8)

Expression (5.8) is known as the canonical equation of a line or the sym-
metric equation of a line.

Example 5.2.1
Find the equation of the line l passing through P0 4 1 5, ,( ) and parallel to the 
vector a i j k= − +2 2 3 .

Solution
Directly from Equation (5.7) we obtain the parametric equations

x = +4 2λ

y = −1 2λ,

z = +5 3λ
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or equivalently, from Equation (5.8) we get the canonical equations for l

 
x y z−

=
−

−
=

−4
2

1
2

5
3

. 
■

Example 5.2.2
Find the (canonical) equation of the line passing through the point P 2 3 4, ,( ) 
and parallel to the vector a i k= −5 .

Solution
From Equation 5 8.( ) above, we have

 
x y z−

=
−

=
−
−

2
5

3
0

4
1

. (5.9)

Hence, one way to determine the equation of a line is from a point through 
which it passes and a vector to which it is parallel.

Remark 5.2.1: It is important to note that, in the Equation 5 9.( ) above, the 

expression 
y − 3

0
 simply means that, since αy = 0, Equation (3') yields y = 3, 

and not that we are dividing y −( )3  by zero.

Example 5.2.3
Find the parametric equations of a line passing through P0 1 3 1, ,−( )  
and P −( )2 4 5, , .

Solution
The position vectors corresponding to points P0 and P are:

r i j k r i j k0 0 3 2 4 5= = − + = = − + +OP OP
- →--- - →--

and .

Thus, any vector a in the direction of the line can be expressed as

a i j k r r= + + = −( )α α α λx y z 0

= − + +( )λ 3 7 4i j k

Hence

x = − ,1 3λ

,y = − +3 7λ

 z = + .1 4λ  ■
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Example 5.2.4
Show that a line l, given by

 r r a= +0 λ , (5.9)

where r0 12 28 0= ( ), ,  and a = ( )9 21 0, , , passes through the origin.

Solution
Writing the equation of the line l explicitly as follows

x y z, , , , , , ,( ) = ( ) + ( )12 28 0 9 21 0λ

we immediately notice that l ∈R2, i.e. l is in the XY- plane. Therefore, if the 
line passed through the origin, we would have

0 0 12 28 9 21, , , .( ) = ( ) + ( )λ

In other words,

0 12 9= + λ,

.0 28 21= + λ

Solving both equations for λ we get λ = −
4
3

. Thus, from (5.9) it immediately 

follows that the line l indeed passes through the origin. ■

Exercise 5.2.1
Show that the vector equation of the line passing through the points A 2 3 1, , −( ) 
and B 3 1 3, ,( ) is

r = −( ) + −( )2 3 1 1 2 4, , , , .λ

Exercise 5.2.2
Show that the equation of the line passing through the point A −( )2 5 1, ,  in the 
direction of the vector a = −( )1 1 2, ,  is

r = −( ) + −( )2 5 1 1 1 2, , , , .λ

Exercise 5.2.3
Find the direction cosines for a line passing through the points A 3 2 4, ,−( )  
and B 5 3 2, ,−( ).
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Exercise 5.2.4
Find parametric equations of the line l:

(i) passing through the point P 4 5 2, ,( ) and parallel to a i j k= − +2 3 3 ;
(ii) passing through the point P 4 5 2, ,( ) and parallel to a i k= −5 .

Exercise 5.2.5
Show that the canonical equation of a line passing through the origin and the 
point P x y z1 1 1, ,( )is

x
x

y
y

z
z1 1 1

= = .

Exercise 5.2.6
Let l be a line passing through the points P1 1 0 2, ,( ) and P2 3 1 2, , −( ). Determine 
whether the point P 7 3 10, ,( ) lies on the line l.

Exercise 5.2.7
Convince yourself that the point 3 7,( ) does not lie on the line described by

x y, , , .( ) = −( ) + ( )4 3 11 2λ

Now let’s look for yet another (analogous) way of constructing the equation of  
a line. Let A x y z1 1 1, ,( ) and B x y z2 2 2, ,( ) be two distinct points determining the  
line l, and let P x y z, ,( ) be another point lying on the line (Figure 5.5), so that

FIGURE 5.5
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r r rA B POA OB OP= = =
- →-- - →-- - →--

, .and

Since AB B A

- →--
= −r r ,

r r r rP A B A− = −( )λ ,

and

 r r rP A B= −( ) +1 λ λ , (5.10)

(cf. Corollary 3.4.1).
With r i j kP x y z= + + , �r i j kA x y z= + +1 1 1 , and r i j kB x y z= + +2 2 2  we have

x y z x y z x y zi j k i j k i j k+ + = −( ) + +( ) + + +( )1 1 1 1 2 2 2λ λ .

Therefore,

 
x x x

y y y

z z z

= −( ) +
= −( ) +
= −( ) +









1
1
1

1 2

1 2

1 2

λ λ
λ λ
λ λ

 (5.11)

which is again a set of parametric equations of a line.
Eliminating λ from 5 11.( ) yields the two- point form of the equation of 

a line:

 
x x
x x

y y
y y

z z
z z

−
−

=
−
−

=
−
−

2

1 2

2

1 2

2

1 2

. (5.12)

Example 5.2.5
Let r i j kA = + +2 3 4 , r i j kB = − + +2  be two vectors specifying points A and B 
on a line l, and let P x y z, ,( ) be another point on the line l. Find the equation 
of the line l.

Solution
r r rP A B= + −( )λ λ1

x y z x y z x y zi j k i j k i j k+ + = + +( ) + −( ) + +( )λ λ1 1 1 2 2 21

�= + +( ) + −( ) − + +( )λ λ2 3 4 1 2i j k i j k

�= −( ) + +( ) + +( )3 1 2 3 1λ λ λi j
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Thus,

x = −3 1λ ,

y = +λ 2,

z = +3 1λ .
Solving for λ we get

λ λ λ=
+

=
−

=
−x y z1

3
2

1
1

3
, , .

Hence

 
x y z+

=
−

=
−1

3
2

1
1

3
. ■

Proposition 5.2.1
Let P P P1 2 3

3, , ∈R  be three distinct points determined by the position vectors 
r r1 2,  and r3, respectively. Then P P P1 2 3, ,  are collinear iff r r2 1−  and r r3 1−  are lin-
early dependent.

Proof
Suppose that the points are collinear. Then P3 must lie on the line determined 
by r1 and r2. Hence there is a scalar λ such that

r r r r3 1 2 1= + −( )λ

or

r r r r3 1 2 1−( ) − −( ) =λ 0.

Thus the vectors r r3 1−  and r r2 1−  are linearly dependent.
Conversely, suppose there are scalars α1 and α2 not both equal to zero, 

such that

α α1 2 1 2 3 1r r r r−( ) + −( ) = 0.

Now, if α1 0≠ , then

r r r r2 1
2

1
3 1−( ) = − −( )α

α
,

i.e.

r r r r2 1 3 1= + −( )λ ,

 

 

 

 

 

 

 

 

 

 

 



Classical Vector Algebra106

106

where, of course, λ α
α

= − 2

1

. Therefore, P2 lies on the line determined by r1and 

r3. In other words, P P P1 2 3, ,  are collinear. The case when α2 0≠  can be treated 
analogously. ■

Corollary 5.2.1
Three distinct points P P P1 2 3

3, , ∈R , determined by the position vectors r r1 2,  
and r3 respectively, are collinear iff there exist scalars α α α1 2 3, , ∈R, not all 
equal to zero, such that

α α α1 1 2 2 3 3r r r+ + = 0

with α α α1 2 3 0+ + = .
Proposition 3.4.8 can now be restated as

Proposition 5.2.2
If r r r1 2 3, ,  are three non- zero, non- coplanar radius vectors, then any vector in 
�R3 space can be expressed as a linear combination of r r r1 2 3, , .

5.3  The Angle Between Two Lines

Definition 5.3.1
Let l1 and l2 be two lines in R3 (Figure 5.6(i)). Then, by the angle

θ θ π
= ≤( , ), ,l l1 2 2

between them, we mean the smaller of the two supplementary angles formed 
by the two lines l1

’ , l2
’  (Figure 5.6(ii)) parallel to l1 and l2 respectively, and 

intersecting at the point P.
Observe that l1  and l2 are two lines given by

r r a= +1 1λ

and

r r a= +2 2λ ,

where

ri i i ix y z i= ( ) =, , , , .1 2
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and the corresponding direction vectors are

ai i i i i= ( ) =α β γ, , , , .1 2

The angle between the direction vectors is

θ

π

π π
=

( ) ( ) ≤

− ( ) ( ) >









, ,

, ,

 

 

a a a a

a a a a

1 2 1 2

1 2 1 2

2

2

if

if

In either case

cos ,θ = ( )cos a a1 2

=
⋅

a a1 2

1 2

⋅
a a

=
+ +

+ + + +

α α β β γ γ

α β γ α β γ
1 2 1 2 1 2

1
2

1
2

1
2

2
2

2
2

2
2

.

So, again, we see that two lines are perpendicular if the scalar product of their 
direction vectors is equal to zero, i.e.

FIGURE 5.6 (i), (ii)
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a a1 2 1 2 1 2 1 2 0⋅ = + + =α α β β γ γ .

On the other hand, if two lines are parallel, then their direction vectors are 
proportional, i.e. a a1 2= λ .

Now, if two lines in the XY- plane are given by their standard equations

A x B y C1 1 1 0+ + =

and

A x B y C2 2 2 0+ + = ,

then the angle between them is equal to the angle between their two respective 
orthogonal vectors n1 1 1= ( )A B,  and ,n2 2 2= ( )A B  (Figure 5.6), and

cos .θ =
⋅

n n1 2

1 2

⋅
n n

Consequently, if two lines are perpendicular, then n n1 2 0⋅ = , and if two lines 
are parallel, then n n1 2= λ .

Example 5.3.1
Find the cosine of the angle between the two lines l1 and l2 given by:

l x y1 3 4 1 0: − + =

l x y2 2 5 0: + − =

Solution

 cos .θ =
⋅

=
⋅ + −( )⋅

+ −( ) +
=

n n1 2

1 2 2 2 2 2

3 2 4 1

3 4 2 1

2
5 5

⋅
n n  

■

Exercise 5.3.1
Find the angle between the lines

l
x y z

l
x y z

1 2
1

1 2
5

2
6

3
2

4 5
and: : .

−
= =

−
−

+
=

−
−

=

Definition 5.3.2
Let l be a line whose direction vector is a, and let Π be a plane in R3. By 
the angle θ = ( ) l, Π  between l and Π we mean the angle between l and its 
orthogonal projection ′l  on the plane Π (Figure 5.7).
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It follows that for the angle between two lines l and ′l  we have

cos |cos , |
π θ
2

−





= ( ) =
⋅

a n
a n

a n
⋅

.

In other words,

sinθ =
⋅a n

a n⋅
.

5.4  The Distance Between a Point and a Line

Definition 5.4.1
Let l be a line in R3. By the distance d d P l= ( )0 ,  between a point P0 and a line 
l we mean the length of the normal drawn from the point P0 to the line l 
(Figure 5.8).

So, to find the distance d P l0 ,( ) between a line l given by

r r l= +1 λ ,

where l = P P1 2

- →---
, and a point P0, we reason as follows:

FIGURE 5.7
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The area A of the triangle ∆P P P0 1 2 is

A l d= ⋅( )1
2

.

The same area is also given by

A P P P P= ×( )1
2 1 0 1 2

- →--- - →---

= −( ) ×
1
2 0 1r r l .

Thus,

1
2

1
2 0 1l d⋅( ) = −( ) ×r r l ,

and therefore

 d
l

=
−( ) ×r r l0 1 . (5.13)

We can approach this in yet another way:
Let

r i j k0 0 0 0= + +x y z ,

FIGURE 5.8
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r i j k1 1 1 1= + +x y z ,

and

l i j k= + +α β γ ,

be as in Figure 5.8.
Then we have

r r i j k0 1 0 1 0 1 0 1− = − + −( ) + −( )( )x x y y z z .

So

d
x x y y z z

l
=

−[ ) + −( ) + −( ) × + +( )| ( ] |0 1 0 1 0 1i j k i j kα β γ

 
= − − −1

0 1 0 1 0 1l
x x y y z z

i j k

α β γ
.
 

(5.14)

Exercise 5.4.1
Show that (5.13) and (5.14) in Definition 5.4.1 are equivalent.

Example 5.4.1
Find the distance between the point P0 2 3 1, ,( ) and the line given by

x y z−
=

+
=

−
−

1
1

2
2

2
2

.

Solution
First, observe that r i j k0 2 3= + + , �r i j k1 2 2= − + , and, since l i j k= + −2 2 ,  
l = 3.

Now, to simplify our calculation of (5.13) let’s introduce the following 
notation

X
y y z z

Y
x x z z

Z
x x y y

=
− −

= −
− −

=
− −0 1 0 1 0 1 0 1 0 1 0 1

β γ α γ α β
, , .

Then we have

d
l

X Y Z= + +
1 2 2 2 .
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Since

X Y Z=
−
−

= − = −
−
−

= = = −
5 1
2 2

8
1 1
1 2

1
1 5
1 2

3, , ,

the distance we are looking for is

 d =
1
3

74 ■

One more way to find the distance from a point to a line is as follows.
Consider a line l given by Ax By C+ + = 0, and a point P x y1 1 1,( ) not on the 

line (Figure 5.9).
If P x y0 0 0,( ) is any point on the line l, then

Ax By C0 0 0+ + = .

Furthermore, let n i j= +A B  be a vector normal to l. Then by the distance d 
between a point P1 and a line l we mean the shortest distance between P1 and 
the line l, i.e., the length of the segment P P1 1

’  of the line perpendicular to l. But 
the distance d is also the magnitude of the projection of r = P P0 1

- →---
�on n, i.e.

d
P P

n
= =

0 1

- →---
⋅ ⋅n

n
r n

.

So, with

OP x y0 0 0 0

- →---
= = +r i j

and

OP x y1 1 1 1

- →---
= = +r i j,

FIGURE 5.9
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r i j= −( ) + −( )x x y y1 0 1 0 .

Furthermore, since

�n i j,= +A B

and

C Ax By= − −0 0 ,

we finally have

d
A x x B y y

A B
=

−( ) + −( )
+

1 0 1 0

2 2

=
+ − −

+

Ax By Ax By

A B

1 1 0 0

2 2

 =
+ +

+

Ax By C

A B

1 1

2 2
.
 ■

Example 5.4.2
Find the distance from P1 3 2,( ) to the line l x y: .3 4 7 0+ − =

Solution

 d
Ax By C

A B
=

+ +

+
=

⋅ + ⋅ −

+
=1 1

2 2 2 2

3 3 4 2 7

3 4
2.

 
■

Example 5.4.3
Let ∆ABC be a triangle in the XY- plane with vertices A B C2 1 4 4 9 7, , , , ,−( ) ( ) ( ). 
Find the altitude hA drawn from vertex A.

Solution
The altitude hA equals the distance between the point A and the line lBC  
passing through the points B and C. So we first find the equation of the line 
using the two- point form of the equation of a line

l
x y

BC : .
−
−

=
−
−

4
4 9

7
4 7

Hence l x yBC :3 5 8 0− + = , and a vector normal to lBC  is n = −( )3 5, . The dis-
tance we are looking for is
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 d
Ax By C

A B
=

+ +

+
=

⋅ + −( )⋅ −( ) +

+ −( )
=1 1

2 2 2 2

3 2 5 1 8

3 5

19
29

. ■

5.5  The Equations of a Plane

Let Π be a plane in 3- dimensional space, determined by three non- collinear 
points P x y z1 1 1 1( , , ), P x y z2 2 2 2, ,( ), and P x y z3 3 3 3, ,( ), and let O; i, j, k( ){ }  be 
our chosen Cartesian coordinate system. Furthermore, let r r1 2, �  and r3 be the 
corresponding position vectors (Figure 5.10).

If P is any other point lying in the plane Π, then we can construct three 
vectors

a r r= = −P P1 2 2 1

- →---
,

b r r= = −P P1 3 3 1

- →---
,

c r r= = −P P1 1

- →--
,

which all lie in the plane Π. Invoking Proposition 4.5.2 we write the (vector) 
equation of the plane as

 c a b⋅ ×( ) =
− − −
−
−

−
−

−
−

=
x x y y z z

x x

x x

y y

y y

z z

z z

1 2 3

2 1

3 1

2 1

3 1

2 1

3 1

0. (5.15)

FIGURE 5.10
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Example 5.5.1
Find the equation of the plane Π determined by the three points 
P P1 21 2 0 3 1 2, , , , ,( ) −( ) and P3 2 4 3, ,( ).

Solution
Consider

P P1 2 2 1 2 3 2
- →---

= − = − +r r i j k,

P P1 3 3 1 2 3
- →---

= − = + +r r i j k,

and let

�r i y k= + +x j z

be the radius vector of an arbitrary point P also in the plane Π.
Then, the vectors r , �P P1 2

- →---
 and P P1 3

- →---
 are coplanar and, according to 5 15.( ) 

above, the equation we are looking for is

x x y y z z

x x

x x

y y

y y

z z

z z

x y z− − −
−
−

−
−

−
−

=
− −

−
1 2 3

2 1

3 1

2 1

3 1

2 1

3 1

1 2
2
1

3
2

2
3

0=

i.e.

 13 4 7 21 0x y z+ − − =  (5.16)
■

Example 5.5.2
Find the equation of the plane through the points P P1 2,  and P3 whose position 
vectors are r i k r i j k1 22 3 2= − = + +,  and r i j k3 4 2= − + + , respectively.

Solution

x x y y z z

x x

x x

y y

y y

z z

z z

x y z− − −
−
−

−
−

−
−

=
− +

−

1 2 3

2 1

3 1

2 1

3 1

2 1

3 1

2 1
1
3

2
44

2
3

0=

i.e.

 2 9 10 14x y z+ − − = 0 (5.17)
■

Equations (5.16) and (5.17) from the previous two examples are in the form

Ax By Cz D+ + + = 0,

which is known as the general equation of a plane.
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Exercise 5.5.1
Show that the equation of a plane passing through P1 2 1 1, ,−( ), P2 3 2 1, , −( ) 
and P3 1 3 2−( ), ,  is

11 5 13 30 0x y z+ + − = .

Example 5.5.3
Determine whether the points P1 2 1 9

2, ,( ) and P2 0 9 1, , −( ) lie in the plane

Π : .
x y z− −

−
−

=
1 2

1 1 4
1 2 3

0

Solution
In order for the points P1 2 1 9

2, ,( ) and P2 0 9 1, , −( ) to be coplanar the following 
has to be satisfied:

x y z

x y z

− −
−

−
= − + + − =

1 2
1 1 4
1 2 3

5 7 3 9 0.

But,

− ⋅ + ⋅ + ⋅ − ≠5 2 7 1 3
9
2

9 0

and

− ⋅ + ⋅ + ⋅ −( ) − ≠5 0 7 9 3 1 9 0.

Thus, neither P1 nor P2 lies in Π. ■
In addition to being uniquely determined by three non- collinear points, 

a plane in 3- space can be determined by the unit vector n0 perpendicular to 
the plane Π and the plane’s distance from the origin of the coordinate system 
δ. So, before deriving this equation let’s see how we can find the distance 
d P, Π( ) between a point P and a plane Π (Figure 5.11).

Suppose that our plane Π is fixed by the unit vector n0 perpendicular to 
the plane and the plane’s distance δ from the origin of the coordinate system 
O; ,i j k,{ }. Furthermore, let P be some point in space whose position vector is 

r. Suppose we want to find the distance d P, Π( ) between the point P and the 
plane Π. Observe that

r n r n r n⋅ 0 0 0 0= ( ) = = +rn r dcos cos( ) ,, , δ
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therefore

 d = −r n⋅ 0 δ. (5.18)

If

n i j k0 = + +cos cos cosϑ ϕ ψ

and

r i j k= + +x y z ,

then

d x y z= + + ⋅ + +( ) −(cos cos cos )ϑ ϕ ψ δi j k i j k

 = + + −x y zcos cos cos .ϑ ϕ ψ δ  (5.19)

Remark 5.5.1
Ordinarily we would consider “distance” to be a positive quantity, but the 
distance d could be “negative” in the case when the points P and O are at the 
opposite sides of the plane Π.

Now we can use this result to construct another equation of a plane. We 
argue as follows: Let Π be a plane in 3- space determined by the unit vector 
perpendicular to it and the distance δ from the origin of the coordinate system 
O; ,i j k,{ }. From 1( )  and 2( ) it follows that a point P is in the plane iff

 �r n⋅ 0 0− =δ  (5.20)

FIGURE 5.11
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or

 cos cos cosx y zϑ ϕ ψ δ+ + − = 0 (5.20′)

Equations 5 20 5 20. / . ’( ) ( ) are known as the normal or the Hesse1 equation of 
a plane.

One more way to construct the equation of a plane is possible if one knows 
the coordinates of two points P x y z0 0 0 0, ,( ) and P x y z, ,( ) lying in the plane Π 
and the vector n normal to the plane (Figure 5.12).

The coordinates of the points P0 and P are also the coordinates of the 
respective position vectors, namely,

OP x y z OP x y z0 0 0 0 0

- →--- - →--
= = + + = = + +r i j k r i j kand .

Consequently, the vector

a r r= = −P P0

- →--
0

= −( ) + −( ) + −( )x x y y z z0 0 0i j k.

Since n is perpendicular to Π it follows that

a n⋅ = 0.

Now, if n i j k= + +n n n1 2 3 , then

FIGURE 5.12
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a n i j k i j k⋅ = −( ) + −( ) + −( )  ⋅ + +( )x x y y z z n n n0 0 0 1 2 3

= −( ) + −( ) + −( )x x n y y n z z n0 1 0 2 0 3

= + +( ) − + +( )xn yn zn x n y n z n1 2 3 0 1 0 2 0 3

 = + + − =xn yn zn1 2 3 0δ , (5.21)

where δ = + +x n y n z n0 1 0 2 0 3.
We recognize the analogue of Equation 5 20. ’ .( )  Rewriting Equation 5 21.( ) as

 xn yn zn1 2 3+ + = δ, (5.22)

and dividing both sides of 5 21.( ) by δ we get

xn yn zn1 2 3 1
δ δ δ

+ + =

or

x

n

y

n

z

n
δ δ δ

1 2 3

1+ + = .

Finally, with

α δ β δ γ δ
= = =

n n n1 2 3

, , ,

we obtain

x y z
α β γ

+ + = 1.

This is the intercept form of the equation of a plane. α β,  and γ  are the x- ,  
y-  and z- intercepts of the plane Π (Figure 5.13).

Example 5.5.4
Find the equation of the plane Π through the point P0 2 1 2−( ), ,  and normal to 
the vector n i j k= − + +2 2 .

Solution
Let r i j k= + +x y z  be the position vector of any point P P≠ 0 in the plane. 
Consider
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a r n= = −P P0

- →--

= + +( ) − − + +( )x y zi j k i j k2 2

= +( ) + −( ) + −( )x y z2 1 2i j k.

Since n and a are perpendicular to each other,

n a n r n⋅ ⋅= −( ) = 0.

So we have

n a n r n⋅ ⋅= −( )

= − + +( )⋅ +( ) + −( ) + −( ) 2 2 2 1 2i j k i j kx y z

= − +( ) + −( ) + −( ) =2 2 1 2 2 0x y z

Hence the equation of the plane Π is

 2 2 9 0x y z− − + = . ■

Exercise 5.5.2
Show that the equation of the plane Π passing through the point P0 1 2 3, ,−( ) 
and perpendicular to the vector n i j k= + −4 4 6  is 4 5 6 22 0x y z+ − + = .

Exercise 5.5.3
Find the equation of the plane Π perpendicular to the vector n i j k= + + 3  and 
passing through the point P0 whose position vector is a i j k= − −2 2 .

FIGURE 5.13
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Example 5.5.5
Find the equation of the plane Π passing through the point P 4 2 1, ,( ) and par-
allel to the plane Π||: 2 3 5 0x y z+ − + = .

Solution
Since Π and Π|| are parallel, the vector n = −( )2 3 1, ,  normal to Π is also normal 
to Π||. Therefore

δ = + −2 3x y z

Since P 4 2 1, ,( ) lies in the plane,

δ = ⋅ + ⋅ − =2 4 3 2 1 13

Hence,

 Π : .2 3 13 0x y z+ − − =  ■

Next, let’s consider a plane in space determined by a point P0 and two non- 
collinear vectors a and b (Figure 5.14).

If P is any other point in Π, then the three vectors a b,  and P P0

- →--
 are coplanar, 

and therefore, according to Proposition 3.4.5, there exist two scalars λ µ, ∈R,  
such that

 P P0

- →--
= +λ µa b (5.23)

But, as is evident from the figure,

P P0 0

- →--
= −r r

FIGURE 5.14
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where, as usual, we take r i j k= + +x y z  and r i j k0 0 0 0= + +x y z .
So,

 r r a b= + +0 λ µ  (5.24)

If a i j k= + +α α α1 2 3  and b i j k= + +β β β1 2 3 , then from 5 24.( ) we obtain the 
parametric equations of a plane:

x x= + +0 1 1λα µβ

 y y= + +0 2 2λα µβ  (5.25)

z z= + +0 3 3λα µβ

In order to get just one equation of a plane, we need to eliminate the parameters 
λ and µ from the system 5 24. .( )  Since, by our construction, vectors a b,  and 
r r− 0 are coplanar, their mixed product has to be zero, i.e.

 

x x y y z z− − −
=

0 0 0

1

1

2

2

3

3

0α
β

α
β

α
β

.
 

(5.26)

5 25.( ) is the equation of a plane determined by a point and two non- collinear 
vectors.

Evaluating the determinant 5 26.( ) we get

x x y y z z−( ) − −( ) + −( ) =0
2 3

2 3
0

1 3

1 3
0

2 2

1 2

0
α α
β β

α α
β β

α α
β β

.

With

A B C= = − =
α α
β β

α α
β β

α α
β β

2 3

2 3

1 3

1 3

2 2

1 2

, ,

and

D Ax By Cz= − − −0 0 0 ,

we get again the general form of the equation of a plane

 Ax By Cz D+ + + = 0, (5.27)

where A B C D, , , ∈R, and at least one of the coefficients A B C, ,  is different 
from zero.
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In conclusion, regardless of the method we use, we eventually come to 
Equation 5 27. .( )

Observe that from 5 27.( ) it follows that:

(i) If D = 0, then Ax By Cz+ + = 0 represents a plane passing through the 
origin;

(ii) If C = 0, then Ax By D+ + = 0 represents a plane parallel to the Z- axis;
(iii) If B = 0, then Ax Cz D+ + = 0 represents a plane parallel to the Y- axis; 

and
(iv) If A = 0, then By Cz D+ + = 0 represents a plane parallel to the X- axis.

Example 5.5.6
What condition has to be satisfied in order for the plane Ax By Cz D+ + + = 0

(i) to be parallel to the YZ- plane?
(ii) to have equal intercepts on the Y-  and Z- axes?

Solution

(i) B C= = 0.
(ii) B C= . ■

Example 5.5.7
Find the equation of the plane determined by the point P 1 1 1, ,( ) and the 
vectors a = −( )1 1 1, ,  and b = −( )2 3 1, , .

Solution

 
x y z

x y z

− − −
−

−
= − + + − =

1 1 1
1
2

1
3

1
1

2 3 5 6 0

 

■

Example 5.5.8
Find the equation of the plane Π in intercept form that passes through the 
points P P1 21 1 0 1 0 1, , , , ,( ) ( ) and P3 0 1 1, ,( ).

Solution
Since points P P1 2, , and P3 lie in the plane Π, the vectors P P1 2 0 1 1

- →---
= −( ), ,  and 

P P1 3 1 0 1
- →---

= −( ), ,  are also in Π. Hence, the equation of the plane Π is

x y z

x y z

− −

−
− = − − − + =

1 1
0
1

1
0

1
1

2 0

 

 

 

 

 

 

 

 

 



Classical Vector Algebra124

124

i.e.

− − − = −x y z 2

and therefore

 
x y z
2 2 2

1+ + = . 
■

Example 5.5.9
Find the equation of the plane containing the vector a k=  and two points P1 
and P2 whose position vectors are r i j k1 2 3= − + +  and r i j k2 3 4= + + .

Solution

r r r i j k= − = − +2 1 4 .

Hence, the equation of the plane is

 

x y z

x y

+ − −
− = − − + =

1 2 3
4
0

1
0

1
1

4 7 0.  

■

Exercise 5.5.4
Let Π be a plane passing through a point P x y z0 0 0, ,( ) and perpendicular to 
the vector n = ( )A B C, , . Show that the equation of Π is

A x x B y y C z z−( ) + −( ) + −( ) =0 0 0 0.

Let’s look once again at the distance between a point and a plane.

Example 5.5.10
Find the distance δ between the point P 1 2 4, ,− −( ) and the plane 
Π : 2 2 11 0x y z+ − − =  (Figure 5.15).

Solution
If we choose any point in the plane, say, P0 3 2 1, , −( ), (indeed:  
2 3 2 2 1 11 0⋅ + ⋅ − −( ) − = ), then

P P0 1 3 2 2 4 1
- →--

= −( ) + − −( ) + − − −( )( )i j k

= − − −2 4 3i j k.

On the other hand, a unit vector perpendicular to Π is
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n i j k0
2
3

2
3

1
3

= + − .

Therefore

δ = ⋅ = − − −( )⋅ + −





P P0 0 2 4 3
2
3

2
3

1
3

- →--
n i j k i j k

 = − − + =
4
3

8
3

3
3

3.
 ■

5.6  The Angle Between Two Planes

Definition 5.6.1
Let Π1 and Π2 be two intersecting planes in R3. By the angle φ = ( ) Π Π1 2,  
formed by Π1 and Π2 we mean the smaller of the two supplementary angles 

between them, i.e. ≤
π
2

 (Figure 5.16). The size of that angle is the same as that 

of the angle between normal vectors n1 and n2 to the respective planes.
So, if Π1 and Π2 are given by

Π1 1 1 1 1 0: ,A x B y C z D+ + + =

Π2 2 2 2 2 0: ,A x B y C z D+ + + =

the corresponding normal vectors are n1 1 1 1= ( )A B C, ,  and n2 2 2 2= ( )A B C, , . So

FIGURE 5.15
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cosφ = ( ) =cos , cos( , )Π Π1 2 1 2n n

=
⋅

=
+ +

+ + + +

| |
.

n n1 2

1 2

1 2 1 2 1 2

1
2

1
2

1
2

2
2

2
2

2
2

⋅
n n

A A B B C C

A B C A B C

Evidently, planes Π1 and Π2 are perpendicular iff

A A B B C C1 2 1 2 1 2 0+ + = .

Likewise, planes Π1 and Π2 are parallel if vectors normal to the planes are 
parallel, i.e.

n n1 2= λ .

This condition may be expressed as

A
A

B
B

C
C

D
D

1

2

1

2

1

2

1

2

= = ≠ .

In other words, if the system of two linear equations

 
A x B y C z D

A x B y C z D
1 1 1 1

2 2 2 2

0
0

+ + + =
+ + + =





 (5.28)

representing planes Π1 and Π2, is inconsistent, then the planes are par-
allel and the coordinates of the normal vectors n1 1 1 1= ( )A B C, ,  and 

FIGURE 5.16
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n2 2 2 2= ( )A B C, ,  are proportional. Conversely, if the system (5.28) is con-
sistent and the equations are proportional, i.e.

A
A

B
B

C
C

D
D

1

2

1

2

1

2

1

2

= = = ,

then Π Π1 2= .

Example 5.6.1
Find the angle φ between the planes

Π Π1 22 2 10 0 4 7 0: : .x y z x y z+ + − = + + − =and

Solution

cos cos( )φ = =
−( )⋅ + ⋅ + ⋅

−( ) + + + +
=n n1 2 2 2 2 2 2 2

1 1 2 1 2 4

1 2 2 1 1 4

1
2

, .

Hence, φ = 45o. ■

Example 5.6.2
Show that the planes

Π1 2 2 3 0: x y z− + − =  and Π2 2 2 7 0: x y z+ − − =
are perpendicular.

Solution
Observe that the vectors n i j k1 2 2= − +  and n i j k2 2 2= + −  are perpendicular 
to the respective planes. On the other hand,

n n i j k i j k1 2 2 2 2 2⋅ = − + ⋅ + −( ) =( ) 0

Thus, planes Π1 and Π2 are perpendicular. ■

Exercise 5.6.1
Prove that:

(i) Π1 3 4 0: x y z+ + + =  and Π2 2 2 0: ,x y z− + + =
(ii) Π1 3 2 7 0: x y z− + + =  and Π2 9 6 3 10 0: x y z− + + = ,

are parallel.
Finally, notice that the line l determined by two intersecting planes (i.e., 

common to both planes) is obtained in the following way:
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Consider two planes

 
Π
Π

1 1 1

2 2 2

0
0

:
:

n r

n r

⋅
⋅

+ =
+ =





D

D
 (5.28)

A point P is on the line l formed by two intersecting planes iff the position 
vector r specifies a point lying in both planes (Figure 5.17).

So, let’s repeat: since an equation of the form

Ax By Cz D+ + + = 0

represents a plane, two such equations considered simultaneously represent 
two planes which, if not parallel, intersect in a straight line.

Of course, many planes may pass through the same line (in fact infinitely 
many), and therefore a line may be determined by any one of infinitely many 
pairs of planes through the line. The set of all planes through a line is called 
a sheaf of planes, (Figure 5.18).

Example 5.6.3
Let

Π1 1 1 1 1 0: ,A x B y C z D+ + + =

Π2 2 2 2 2 0: ,A x B y C z D+ + + =

be two intersecting planes. Find the direction numbers, i.e. the components, of  
the vector of the line common to Π1 and Π2.

FIGURE 5.17
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Solution
The following vectors are normal to Π1 and Π2, respectively:

n i j k1 1 1 1= + +A B C

and

n i j k2 2 2 2= + +A B C

The line determined by the two planes is perpendicular to the vectors normal 
to the planes, i.e. it is parallel to

n n

i j k

i j1 2 1

2

1

2

1

2

1 2 2 1 1 2 2 1 1 2 2 1× = = −( ) − −( ) + −A

A

B

B

C

C
B C B C A C A C A B A B(( )k.

Hence, the direction numbers we are looking for are:  
( ),B C B C A C A C1 2 2 1 1 2 2 1− −( ) and A B A B1 2 2 1−( ). ■

Example 5.6.
Find the equation of the line l common to the planes:

Π1 4 0: i j k r+ +( ) − =⋅

Π2 2 2 0: i j k r− +( ) + =⋅

FIGURE 5.18
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Solution
Rewriting Π1 and Π2 in standard coordinate form we get

 
Π
Π

1

2

4 0
2 2 0

:
:
� � � � � �
� � �

x y z

x y z

+ + − =
− + + =




 (5.30)

Thus, vectors normal to the corresponding planes are:

n i j k n i j k1 2 2= + + = − +and .

So

 n n

i j k

i j k1 2 1
2

1
1

1
1

2 3× =
−

= + −  (5.31)

Now, if x = 0, system 5 29.( ) becomes

 
y z

y z

+ − =
− + + =





4 0
2 0

 (5.32)

Solving 5 31.( ) we get y = 3 and z = 1, so the point P 0 3 1, ,( ) is on the line we are 
looking for. Finally, with 2( ) and the coordinates of the point, we can write the 
canonical equation of the line l

x y z
2

3
1

1
3

=
−

=
−

−

Equivalently, we can write

 r j k i j k= + + + −( )3 2 3λ . ■

Another, equivalent, approach is illustrated in the following example.

Example 5.6.5
Find the equation of the line l common to the planes

 
Π
Π

1

2

3 8 0
2 4 2 0

:
:

x y z

x y z

− + − =
+ + − =





 (5.33)

Solution
Let’s first find the two points (the piercing points) where the line l passes 
through two of the coordinate planes, the XY- plane and the YZ- plane. If we 
take z = 0 then from 5 33.( ) we get

 

 

 

 

 

 

 

 

 

 

 



Elements of Analytic Geometry 131

131

 
�
�
3 8 0
2 2 0

x y

x y

− − =
+ − =





 (5.34)

Solving 5 34.( ) we get one piercing point A 2 2 0, ,−( ) in the XY- plane. Similarly, 
if x = 0 then from 5 33.( ) we get

 
�
�
− + − =

+ − =




y z

y z

8 0
4 2 0

 (5.35)

Solving 5 35.( ) we get the piercing point B 0 6 2, ,−( ) in the YZ- plane. Now it is 
easy to construct a vector AB

- →--
= − − +2 4 2i j k which gives us direction numbers 

for the line AB l= . Hence, the canonical equation of l is

 
x y z−
−

=
+

−
=

2
2

2
4 2

. ■

Note

1 Ludwig Otto Hesse (1811– 1874), German mathematician.
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Appendix A

A.1  Sets

The word set, introduced in 1897 by Georg Cantor,1 is used to indicate a 
collection, “collection into a whole”, of definite and separate objects, i.e., 
objects that have some (at least one) property that separates them from every-
thing else. These objects are called the elements or members of the set.

If A is a set, the notation a A∈  means that a is an element of A, and x A∉  
means that x is not a member of A. This is graphically represented by a Venn 
diagram (Figure A.1).

To list the elements of a set explicitly, we write

A a b c d e f= { }, , , , ,

meaning that a A b A c A∈ ∈ ∈, , , etc.
If A is a set and P x( ) is a property that is satisfied by all elements of A, 

we write

A x P x= ( ){ }|

which is read as “A is the set of all x’s such that P x( )”, i.e., all those elements 
x satisfying property P. More formally, we have

Axiom of Extensionality: A set is uniquely determined by the elements it 
contains, i.e. two sets are considered equal if they have the same elements. This is 
often, but less clearly, stated as: A set is determined by its extension. We write

A B x x A x B= ↔ ∀( ) ∈ ↔ ∈( ).

Definition A.1
Given two sets A and B, we say that B is a subset of A, and we write B A⊆ , if 
and only if every element of A is also an element of B, i.e.

B A x B x A⊆ ↔ ∀ ∈ ∈( ), ,

(Figure A.2).

Definition A.2
Given two sets A and B we define the union of A and B, denoted by A B∪ , to 
be the set of all elements that are in at least one of A or B, i.e.,
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A B x x A x B∪ = ∈ ∈{ },| or

(Figure A.3).
The union of a collection of n sets is defined analogously:

A A A A x x A i ni n i
i

n

= ∪ …∪ = ∈ = …{ }
=

1 2
1

1for at least one| , .


Definition A.3
Let A and B be sets. The intersection of A and B, denoted by A B∩ , is the set 
of all elements that are common to A and B, i.e.

A B x x A x B∩ = ∈ ∈{ | & },

(Figure A.4).
The intersection of a collection of n sets is defined analogously:

i

n

i n iA A A A x x A i n
=

= ∩ ∩… ∩ = ∈ = …{ }
1

1 2 1 2


for all| , , , .

FIGURE A.3

FIGURE A.2

FIGURE A.1
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Note

1 Georg Ferdinand Ludwig Philipp Cantor (1845– 1918), German mathematician.

FIGURE A.4
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Appendix B

B.1  Sets of Numbers

Natural numbers:

N = …{ }1 2 3, , , 1

Integers:

Z = …− − − …{ }, , , , , , , ;3 2 1 0 1 2 3

Rational numbers:

| , , , .Q Z= = ∈ ≠








x x
p
q

p q q 0

Notice that N Z Q R⊆ ⊆ ⊆  (Figure B.1).

B.2  Properties of the Real Numbers

Consider the set R, with two binary operations, “ ”+ , called addition, and “ ”⋅ , 
called multiplication, then we want the following to hold:

A 1.1 A 1.1 ∀ ∈ + = + ∈a b a b b a, ,R R;
A 1.2 A 1.2 ∀ ∈ ⋅ = ⋅ ∈a b a b b a, ,R R;
A 2.1 A 2.1 ∀ ∈ +( ) + = + +( )a b c a b c a b c, , ,R ;
A 2.2 A 2.2 ∀ ∈ ⋅( )⋅ = ⋅ ⋅( )a b c a b c a b c, , ,R ;
A 3.1 A 3.1 ∀ ∈ ⋅ +( ) = ⋅ + ⋅a b c a b c a b a c, , ,R ;
A 3.2 A 3.2 ∀ ∈ +( )⋅ = ⋅ + ⋅a b c b c a b a c a, , ,R ;
A 4.1 A 4.1 ∃ ∈0 R, 0 0+ = + = ∀ ∈a a a a, R;
A 4.2 A 4.2 ∃ ∈1 R, 1 1⋅ = ⋅ = ∀ ∈a a a a, R ;
A 5.1 A 5.1 ∀ ∈ ∃ −( ) ∈ + −( ) = −( ) + =, ,a a a a a aR R 0;
AA 5.2 ∀ ∈a R if a ≠ 0, ∃ ∈−a 1 R, a a a a⋅ = ⋅ =− −1 1 1.

In mathematics, a field Φ is a set on which two binary operations, denoted  
“+ ” and “⋅”, called “addition” and “multiplication”, are defined such that the  
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corresponding inverse operations “subtraction” and “division” also exist, i.e.,  
such that the set is closed with respect to these operations. These operations  
have to satisfy the following axioms:

F1 1. , , ;∀ ∈ + = + ∈α β α β β αΦ Φ

F1 2. , , ;∀ ∈ ⋅ = ⋅ ∈α β α β β αΦ Φ

F 2 1 0 0 0. , , ;∃ ∈ + = + = ∀ ∈Φ Φα α α α

F 2 2 1 1 1. , , ;∃ ∈ ⋅ = ⋅ = ∀ ∈Φ Φα α α α

F 3 1 0. , , ;∀ ∈ ∃ −( ) ∈ + −( ) = −( ) + =α α α α α αΦ Φ

F 3 2 0 11 1 1. , , ;∀ ≠ ∈ ∃ ∈ ⋅ = ⋅ =− − −α α α α α αΦ Φ

F 4 1. , , , ;∀ ∈ + +( ) = +( ) +α β γ α β γ α β γΦ

F 4 2. , , , ;∀ ∈ ⋅ ⋅( ) = ⋅( )⋅α β γ α β γ α β γΦ

F 5 1. , , , ;∀ ∈ ⋅ +( ) = ⋅( ) + ⋅( )α β γ α β γ α β α γΦ

F 5 2. , , , .∀ ∈ +( )⋅ = ⋅( ) + ⋅( )α β γ β γ α β α γ αΦ

It follows that the set R, satisfying axioms AA 1.1 –  A 5.2, is a field.
If a b c, , ∈R  then the following also hold:

T.1 If a b a c+ = + , then b c= ;
T.2 a b a b− = + −( );
T.3 − −( ) =a a;
T.4 −( )⋅ = ⋅ −( ) = − ⋅( )a b a b a b ;
T.5 a b c a b a c⋅ −( ) = ⋅ − ⋅ ;
T.6 0 0 0⋅ = ⋅ =a a ;
T.7 If a b⋅ = 0, then a = 0 or b = 0;

FIGURE B.1
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T.8 If a b a c⋅ = ⋅  and a ≠ 0, then b c= ;
T.9 If b ≠ 0, then a b a b/ = ⋅ −1;
T.10 If a ≠ 0, then a a− −( ) =1 1

;
T.11 Exactly one of the following is true: a b a b a b, , or = ;
T.12 If a b< , then a c b c+ < + ;
T.13 If a b<  and c > 0, then ac bc< ;
T.14 If a b< , then − > −a b;

Note

1 Some authors include 0 in N.
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Appendix C

With each square matrix A, i.e., a rectangular array of scalars usually 
represented as

A

a a a

a a a

a a a

n

n

n n nn

=

…
…

…
…

















11 12 1

21 22 2

1 2

  



,

we can associate a special scalar called the determinant of A, denoted by 
det A, represented as

det .A

a a a

a a a

a a a

n

n

n n nn

=

…
…

…
…

11 12 1

21 22 2

1 2

  

Determinants of order 1, 2, and 3 are defined as follows:

a a11 11= ,

a a

a a
a a a a11 12

21 22
11 22 12 21= − ,

a a a

a a a

a a a

a a a a a a a a a
11 12 13

21 22 23

31 32 33

11 22 33 23 32 12 21 33= − − −( ) 223 31 13 21 32 22 31a a a a a a( ) + −( ).
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Index

absolute value 80
addition of vectors 18 ff; in  

n- dimensional space 5 ff; - in 44– 6
additive identity 6, 21
additive inverse 6, 26
analytic geometry 93
angle: between two lines 106 ff; between 

two planes 125 ff; between two 
vectors 50 ff

area: of a parallelogram 67 ff; of a 
triangle 69 ff

Argand, Robert 69
associativity: of addition 24– 46 ff; of 

multiplication of real numbers 137
axiom(s): of extensionality 133;  

of linear space (vector space) 6

basis: canonical 36 ff; orthonormal 49 ff; 
of R3 space 39; of a vector space 34, 39

binary operation(s) 18 ff

cancelation law 52
canonical: basis 36 ff; equation 100 ff
Cantor, Georg 133
Cartesian coordinate system: origin of 

13 ff
Cauchy– Schwartz inequality 63
circle- equation of 60
collinear vectors 16 ff
commutativity: of addition 5 ff; of 

multiplication of real numbers 137
components: of cross product 70;  

of a vector 48
coordinate(s) axes: of a point 94;  

of a vector 44
coplanar vectors 16 ff
cosine: law 62; theorem 63
cross- dot product 80 ff
cross product 66 ff

determinant 141
difference of vectors 20 ff
dimension 3 ff
direction vectors 107 ff

direction cosines 53
distance: between a point and a line 109 

ff; between a point and a plane 116 ff; 
between two points 95

dot- cross product 80

equation(s): canonical 100; general 115; 
Hesse 118; intercept form 119; of a line 
97 ff; passing through a point 101 ff; of 
a plane 115 ff; symmetric 100

equivalence relation 12
equivalent class(es) 10, 12
Euclidean space 9 ff

field 137
function (mapping) 6 ff

Gauss, Carl Friedrich 1
Gibbs, Josiah Willard 1
Grassmann, Hermann Günther 1

Hamilton, William Rowan 1
Hesse equation of a plane 118
Heaviside, Oliver 1

inverse: additive 6; multiplicative 138
isomorphic vectors 14

Jacobi identity 88

law: cosine 62; sine 77– 8
Leibniz, Gottfried Wilhelm 1
line(s): canonical equation of 100; 

equation of 97 ff; perpendicular 107; 
symmetric equation of 100; two- 
point form of equation of 104; vector 
equation of 99

linear space (vector space) 6 ff
linearly: dependent vectors 32 ff; 

independent vectors 32 ff

magnitude of a vector 15, 37, 41
mapping 6 ff
mixed product 80 ff
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modulus 15; of a vector 15, 37, 41
multiplication: cross (product) 66;  

by a scalar 44, 50
multiplicative inverse 138

natural numbers 137
Newton, Isaac 1
norm of a vector 15, 37, 41
null- vector 15

operation: associative 24; binary 18, 137; 
commutative 15, 20, 45

parallelogram 1, 19, 28 ff
plane(s): equation of a 114 ff; general 

equation of a 115 ff; Hesse equation of 
a 118; intercept form of equation of a 
119; parallel 121 ff; perpendicular 126; 
sheaf of 128

point: coordinates of a 4; n- dimensional 4
position vector (radius vector) 14 ff
product: cross 66 ff; dot (scalar) 50 

ff; mixed 80 ff; quadruple cross 90; 
quadruple dot 90; triple cross 86

projection; of a force 58; orthogonal 108; 
of a vector 57

properties; of a cross product 73; of real 
numbers 137

quadruple dot cross quadruple cross 
product 90 ff

radius vector 14– 17 93 ff
rational numbers 137
real: line 3 ff; numbers 3 ff; properties of 

137; vector space 50 ff
rhombus 64

rigid body 79
Rn space 4 ff
R3 space 4 ff

scalar(s) 6 ff: multiplication by 16, 44 ff
semicircle 60
set 130
sheaf of planes 128
Sine law 77– 8
space: definition of 6; 1- dimensional 3 ff;  

2- dimensional 3 ff; Euclidean 1– 9,  
93– 7; n- dimensional 3– 4 ff; real 3– 6,  
4 ff, 4 ff; vector 6 ff

sphere equation of 60
system: Cartesian 1– 7 ff; right- handed 

39, 93

tetrahedron 69
triangle inequality 64
triple product 80

unit vector(s) 43, 48 ff; definition of 48

vector(s): addition of 18 ff; addition in  
44 ff; collinear 16 ff; coordinates of 13,  
40 ff; coplanar 16 ff; cross multiplication 
of 66; definition of 3, 9 ff; 1- dimensional 
4, 9 ff; 2- dimensional 4, 9 ff;  
3- dimensional 9; equation of a line 99; 
magnitude of 15, 37, 41; modulus of 15; 
multiplication by a scalar 44 ff;  
n- dimensional 4; null- vector 15;  
of a plane 114; position 14– 17, 93 ff; 
projection 57; radius 14– 17, 93 ff; scalar 
multiplication 50; space 9 ff; unit 48 ff

zero (null) vector 15
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